
Introduction to Computational Thinking
Author(s)
Silvio Peroni​ – ​silvio.peroni@unibo.it
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Computational thinking; Language; Noam Chomsky; Programming

Copyright notice
This work is licensed under a ​Creative Commons Attribution 4.0 International License​. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
These lecture notes introduce the main concepts related to ​computational thinking by providing
a summary of relevant topics in the areas of Linguistics and Computing in the past 200 years.
The historic hero introduced in these notes is Noam Chomsky, considered the father of modern
linguistics. His works have been a huge impact in the Linguistics domain as well as in the
Theoretical Computer Science domain.

Historic hero: Noam Chomsky
Noam Chomsky (shown in ​Figure 1​) is one of the most prominent scholars of the last one
hundred years. His contributions and research works have been disruptive and have changed
the way scholars have approached several domains in science and humanities. He has been
described as the father of the modern linguistics, and he is one of the very first contributors and
founders of the cognitive science field – that concerns the study of mind and its processes
according to several interdisciplinary perspectives, including linguistics, psychology, and
artificial intelligence.

His approach to linguistics has been really revolutionary. The main aspect of his approach to
human language is that the principle underlying its structure is ​biologically determined in all
humans – it is already within us since our birth – and, as such, it is a unique characteristic that
has been evolved in time and that is shared by human beings only, and not by other animals.
His view of human language is in great contrast with previous ideas about the evolution of

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Universal_grammar
https://en.wikipedia.org/wiki/Universal_grammar

languages, that want each human being as an empty-bucket mind, without any preconfigured
linguistic structure, and thus the language should be a matter of learning a radically new
endeavour from scratch.

Figure 1.​ A picture of Chomsky taken in 2011. Picture by Andrew Rusk, source:

https://en.wikipedia.org/wiki/Noam_Chomsky#/media/File:Noam_Chomsky_Toronto_2011.jpg​.

Among his large series of works in linguistics, the ​classification of formal grammars into a
hierarchy of increasing expressiveness is undoubtedly one of his most important contributions,
especially in the field of the Theoretical Computer Science and Programming Languages. A
formal grammar is a mathematical tool for defining a language (e.g. a natural language, such as
English) according to a finite set of production rules, that allows one to construct any syntactic
valid sentence of such language.

Each formal grammar is composed of a set of production rules in the form ​left-side ::=

right-side (according to the ​Backus–Naur form​, or BNF), where each side can contain one
or more symbols of one or more of the following types:

● terminal (specified between quotes in BNF), which identifies all the elementary symbols
of the language in consideration (such as the nouns, verbs, etc., in English);

● non-terminal (specified between angular brackets in BNF), which identifies all the
symbols in the formal grammar that can be replaced by a combination of terminal and
non-terminal symbols.

https://en.wikipedia.org/wiki/Noam_Chomsky#/media/File:Noam_Chomsky_Toronto_2011.jpg
https://en.wikipedia.org/wiki/Noam_Chomsky#/media/File:Noam_Chomsky_Toronto_2011.jpg
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

In principle, the main idea of the application of a production rule is that the sequence of symbols
in the ​left-side part can be replaced with those ones specified in the ​right-side part until
the sequence includes only terminal symbols. For instance, the production rules ​<sentence>

::= <pronoun> "write" ​, ​<pronoun> ::= "I" and ​<pronoun> ::= "you" allows
one to create all the two-word sentences having either the first or the second person singular
pronoun accompanied by the verb write (e.g. “I write”). In addition, each formal grammar must
specify a ​start symbol​, that must be non-terminal.

The hierarchy proposed by Chomsky provides a way for describing formally the relations that
may exist between different grammars in terms of the possible syntactic structures that such
grammars are able to generate. In practice, they are characterised by which kinds of symbols
one can use in the ​left-side and ​right-side parts of production rules. These grammars
are listed as follows, from the less expressive to the most expressive – we use letters from the
Greek alphabet for indicating any possible combination of terminal and non-terminal symbols,
including the empty symbols (usually represented by ​ε ​):

● regular grammars – form of production rules: ​<non-terminal> ::= "terminal"
and ​<non-terminal> ::= "terminal" <non-terminal> ​. Example:
<sentence> ::= "I" <verb>

<sentence> ::= "you" <verb>

<verb> ::= "write"

<verb> ::= "read"

● context-free grammars​ – form of production rules: ​<non-terminal> ::= γ ​. Example:
<sentence> ::= <nounphrase> <verbphrase>

<nounphrase> ::= <pronoun>

<nounphrase> ::= <noun>

<pronoun> ::= "I"

<pronoun> ::= "you"

<noun> ::= "book"

<noun> ::= "letter"

<verbphrase> ::= <verb>

<verbphrase> ::= <verb> "a" <noun>

<verb> ::= "write"

<verb> ::= "read"

● context-sensitive grammars – form of production rules: ​α <non-terminal> β ::= α

γ β ​. Example:
<sentence> ::= <noun> <verbphrase>

<sentence> ::= <subject pronoun> <verbphrase>

"I" <verb> <object pronoun> ::= "I" "love" <object pronoun>

"I" <verb> <noun> ::= "I" "read" "a" <noun>

<verbphrase> ::= <verb> <noun>

<verbphrase> ::= <verb> <object pronoun>

<subject pronoun> ::= "I"

<subject pronoun> ::= "you"

<object pronoun> ::= "me"

<object pronoun> ::= "you"

<noun> ::= "book"

<noun> ::= "letter"

● recursively enumerable grammars – form of production rules: ​α ::= β (no restriction
applied). Example:
<sentence> ::= <subject pronoun> <verbphrase>

"I" <verb> <object pronoun> ::= "I" <verb> "you"

"I" <verb> <noun> ::= "I" "read" "a" "book"

<verbphrase> ::= <verb> <noun>

<verbphrase> ::= <verb> <object pronoun>

<subject pronoun> ::= "I"

<subject pronoun> ::= "you"

<object pronoun> ::= "me"

<object pronoun> ::= "you"

<verb> ::= "love"

<verb> ::= "hate"

What is a computer?
The term ​computer is currently used to identify an “electronic device which is capable of
receiving information (data) in a particular form and of performing a sequence of operations [...]
to produce a result” – from the ​English Oxford Living Dictionary​. However, the original definition
of the same term, in use from the 17th century, is slightly different. In fact, it refers to someone
“who computes” or to a “person performing mathematical calculations” – from ​Wikipedia​. In
these lecture notes, when we use the term “computer” we always consider the most generic
definition: ​any agent (i.e. anything that can act if appropriately instructed, such as a person or a
machine) that is able to make calculations and to produce some output starting from input
information​.

Human computers, i.e. group of people who have to undertake long calculations for certain
experiments or measurements, have been used several times in the past. For instance, in
Astronomy, human computers have been used for calculating astronomical coordinates of
non-terrestrial things – such as the calculation of passages of the ​Halley's Comet by Alexis
Claude Clairaut and colleagues. Similarly, human computers have been used also for
addressing Governmental issues, e.g. when Napoleone Bonaparte imposed the creation of
mathematical tables for converting the values from the old imperial system of measurements to
the new metric system ​[Campbell-Kelly, 2009]​ ​[Roegel, 2010]​.

In 1822, ​Charles Babbage​, understanding the complexity of doing all these calculations by hand
without introducing any error, started the development of an incredible machine. This machine,
called the ​Difference Engine (a mechanical calculator, shown in ​Figure 2​), aimed at addressing

https://en.oxforddictionaries.com/definition/computer
https://en.wikipedia.org/wiki/Human_computer
https://en.wikipedia.org/wiki/Halley%27s_Comet
https://en.wikipedia.org/wiki/Halley%27s_Comet
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Difference_engine
https://en.wikipedia.org/wiki/Difference_engine

similar tasks that were run by human computers, but in a way that was automatic, faster, and
error-free. Babbage was able to build just a partial prototype of this machine, and, after the first
enthusiasm, he was struggled by the limited flexibility that it offered. In fact, the Difference
Engine was not a programmable machine and, thus, it was able to compute only a fixed set of
operations on the inputs specified physically by changing specific configurations of the machine.

Figure 2. ​Babbage Difference Engine No. 2 built at the Science Museum (London) and

displayed at the Computer History Museum in Mountain View (California). Picture by Allan J.
Cronin, source:​ ​https://commons.wikimedia.org/wiki/File:Difference_engine.JPG​.

In order to address these limitations, in 1837 Babbage started to think a new machine, the
Analytical Engine​, summarised in ​Figure 3​. While no prototypes of this machine were built by
Babbage, in principle it would have enabled a user to create any possible procedural
calculation, making it the very first mechanical general-purpose computer in history. In contrast
to its predecessor, the Analytical Engine was able to receive the input instructions and data by

https://commons.wikimedia.org/wiki/File:Difference_engine.JPG
https://commons.wikimedia.org/wiki/File:Difference_engine.JPG
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Analytical_Engine

means of ​punched cards​, without obliging its users to make any physical manipulation of the
machine to get it working.

Figure 3. ​A sketch by Babbage that describes the main architecture of the Analytical Engine.

Source:​ ​The Analytical Engine: 28 Plans and Counting​, Computer History Museum.

More than one century was needed for seeing the ideas presented in the Analytical Engine
developed in some physical machine. In fact, the computing technology had a drastic change as
a consequence of the World War II. Several calculators were built for military reasons, such as
the ​Bombe (1940), designed by ​Alan Turing​, which was the main instrument that allowed a
group of people, living in the secret British military camp at ​Bletchley Park​, to decipher
German's communications encrypted by means of the​ ​Enigma machine​.

While the Bombe was a very effective and efficient machine, it was still partially based on
mechanical components, and it allowed their users only a specific task, even if it was crucial
from a purely historical point of view. The first fully-digital computer, as envisioned by Babbage
with his Analytical Engine, was developed in the United States only a few years later, in 1946. It
was the ​Electronic Numerical Integrator and Computer (ENIAC)​, shown in ​Figure 4​, that was
programmable by means of patch cables and switches. This invention represents one of the
most important milestones of the history of computers - the fixed point in time where all the
modern computers have been then generated.

https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Punched_card
http://www.computerhistory.org/atchm/httpwww-computhe-analytical-engine-28-plans-and-counting/
http://www.computerhistory.org/atchm/httpwww-computhe-analytical-engine-28-plans-and-counting/
https://en.wikipedia.org/wiki/Bombe
https://en.wikipedia.org/wiki/Bombe
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Bletchley_Park
https://en.wikipedia.org/wiki/Bletchley_Park
https://en.wikipedia.org/wiki/Enigma_machine
https://en.wikipedia.org/wiki/Enigma_machine
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/ENIAC

Figure 4. ​A picture of the ENIAC in the Ballistic Research Laboratory (Maryland). Source:
https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg​.

Natural languages vs. programming languages
There is an aspect of ​computers (either humans or machines) that has not directly tackled yet:
which mechanism can we use for asking them to address a particular task? The way to
approach this issue is extremely linked to the particular communication channel we want to
adopt. Considering human computers, we can use the natural language (e.g. English) to instruct
them in addressing specific actions.

A ​natural language is just an ordinary language (e.g. English), either written or oral, that has
evolved naturally in humans, usually without a specific and premeditated planning. As we know
them, natural languages have the advantage (and, on the other hand, disadvantage) of being so
expressive that particular instructions provided by using them can sound ambiguous. Consider
for instance ​the sentence “shot an elephant in your pyjamas”​. Does it mean that you have to
shot an elephant (with a rifle) while you are wearing a pyjamas, or that you should shot an
elephant (with a water gun) that is drawn in your pyjamas? However, often, we could come up

https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg
https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/List_of_linguistic_example_sentences
https://en.wikipedia.org/wiki/List_of_linguistic_example_sentences

with specific (e.g. social) conventions that would allow us to restrict the possible meaning of a
piece of information – in the previous example, the fact you are in your bedroom and you are
not living in Gabon is enough for disambiguating the sentence. While natural languages are not
formal by definition, several studies in Linguistics try to provide their formalisation by means of
some mathematical tool, e.g. ​[Bernardi, 2002]​. It is worth mentioning that, even if one can
provide a formal definition of a natural language, its intrinsic vagueness are still present in the
language itself – i.e. one cannot use mathematics (or, better, logics) for removing (all) the
ambiguities from a natural language.

Programming languages​, on the contrary, are formal-born languages. They oblige to specific
syntactic rules, and they are usually developed in a way that avoids possible ambiguous
statements (mainly by restricting their expressiveness), so as that all the sentences in such
language are clearly conveying just one possible meaning. They are usually based on
context-free grammars, according to the Chomsky's classification introduced in ​Section "Historic
hero: Noam Chomsky"​, and can have a large degree of abstraction. In particular, they are
mainly grouped in three macro-sets:

● machine language is a set of instructions that can be executed directly by the ​central
processing unit (CPU) of an electronic computer. For instance, the following code is the
binary executable code (i.e. a sequence of 0 and 1) defining a function (i.e. a kind of tool
that takes some inputs and produces some output) for calculating the n​th ​Fibonacci
number​:
100010110101010000100100000010001000001111111010000000000111011

100000110101110000000000000000000000000000000000011000011100000

111111101000000010011101110000011010111000000000010000000000000

000000000001100001101010011101110110000000100000000000000000000

000010111001000000010000000000000000000000001000110100000100000

110011000001111111010000000110111011000000111100010111101100110

001001110000010100101011101011111100010101101111000011

● low-level programming languages are languages that provide one abstraction level on
top of the machine language, and thus it allows one to write programs in a way that is
more intelligible to humans. The most famous language of this type is ​Assembly​. Even if
it introduces humanly understandable symbols, typically one line of assembly code
represents one machine instruction in machine language. For instance, the same
function for calculating the n​th​ Fibonacci number is defined in Assembly as follows:
fib:

 mov edx, [esp+8]

 cmp edx, 0

 ja @f

 mov eax, 0

 ret

 @@:

 cmp edx, 2

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language

 ja @f

 mov eax, 1

 ret

 @@:

 push ebx

 mov ebx, 1

 mov ecx, 1

 @@:

 lea eax, [ebx+ecx]

 cmp edx, 3

 jbe @f

 mov ebx, ecx

 mov ecx, eax

 dec edx

 jmp @b

 @@:

 pop ebx

 ret

● high-level programming languages are languages which are characterised by a strong
abstraction from the specifiability of the machine language. In particular, it may use
natural language words for specific construct, so as to be easy to use for and to
understand by humans. Generally speaking, the more the abstraction from the low-level
programming languages is provided, the more understandable the language is. For
instance, in the following example we show how to use the ​C programming language for
implementing the same function as before:
unsigned int fib(unsigned int n) {

 if (n <= 0)

 return 0;

 else if (n <= 2)

 return 1;

 else {

 unsigned int a,b,c;

 a = 1;

 b = 1;

 while (1) {

 c = a + b;

 if (n <= 3) return c;

 a = b;

 b = c;

 n--;

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)

 }

 }

}

We can also apply an additional level of abstraction to the previous example, in order to provide
natural language instructions for enabling a human computer, this time, to perform the operation
depicted by the function for calculating the Fibonacci number. While natural language is not
included in any of the aforementioned sets defining programming languages, it would allow us
to see how we can use even a more abstract language for instructing someone else in
performing the same operation. In particular, a possible natural language description of the
Fibonacci function is shown as follows:

The function for calculating the n ​th Fibonacci number takes as input

an integer “n”. If “n” is less than or equal to 0, then 0 is returned

as result. Otherwise, if “n” is less than or equal to 2, then 1 is

returned. Otherwise, in all the other cases, associate the value “1”

to two distinct variables “a” and “b”. Then, repeat indefinitely the

following operations: set the variable “c” as the sum of “a” plus

“b”; if “n” is less than or equal to “3” then return “c”, otherwise

assign the value of “b” to “a” and the value of “c” to “b”, and

finally decrease the value of “n” by 1 before repeating.

While the previous natural language definition maps perfectly the function defined in the
machine binary code introduced above, other possible implementations of such Fibonacci
function are possible. One of the most famous, that uses the concept of ​recursion​, is introduced
as follows:

The function for calculating the n ​th Fibonacci number takes as input

an integer “n”. If “n” is less than or equal to 0, then 0 is returned

as result. Otherwise, if “n” is equal to 1, then 1 is returned.

Otherwise, return the sum of the same function with “n-1” as input

and still the same function with “n-2” as input.

Abstraction is the key
We often say that we ​program a computer – where the word computer there refers to an
electronic computer. However, according to the definition we have provided in this document,
computers can be both humans and machines. Thus, the verb ​to program is not very well suited
when we refer to human computers – we cannot really program a person, can we? In this latter
case, in fact, we usually say that we ​talk with a person to instruct her to execute specific actions,
by means of a particular (natural) language that is used as a communication channel. Thus, we
think that, in this context, we should use the same verbs, i.e. ​to talk and ​to instruct​, even when

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)

we refer to an electronic computer. Basically speaking, writing a program is exactly that:
communicating to an electronic computer in a (formal) language that it and the human instructor
can both understand ​[Papert, 1980]​.

Once agreed on which language to use for the communication between us and a computer
(either human or machine), we should start to think about possible instructions that, if followed
systematically, can return the expected result to a certain problem. In order to reach this goal,
we (even unconsciously) try to figure out possible solutions to such given problem by comparing
it with possible other recurring situations that happened in the past. The idea is to find some
patterns that depict a possible solution for a set of abstractly-homogeneous situations, so as to
reuse the same strategy for reaching our goal, if that strategy has been successful in the past.
For instance, it could be possible that some of the actions that we perform at a post office are
quite similar to those ones we performed when we were a child waiting for our turn to play with a
slide in the playground – as shown in ​Figure 5​.

Figure 5. ​Two pictures that depict the same situation, i.e. queuing, in two different contexts: a

playground (left) and a post office (right). Left picture by Prateek Rungta, source:
https://www.flickr.com/photos/rungta/4409560365/​. Right picture by Rain Rabbit, source:

https://www.flickr.com/photos/37996583811@N01/6158491035/​.

According to the aforementioned situations and context, we call ​computational thinking a
particular approach to “solving problems, designing systems and understanding human
behaviour that draws on concepts fundamental to computing” ​[Wing, 2008] – where with the
word ​computing we mean ​calculating​. Computational thinking is the thought processes that are
involved when we formulate a problem and express the solution by using a language that a
computer (either human or machine) can understand and, thus, execute.

Jeannette Wing provides an additional definition for clarifying what computational thinking is
about ​[Wing, 2008]​:

https://www.flickr.com/photos/rungta/4409560365/
https://www.flickr.com/photos/rungta/4409560365/
https://www.flickr.com/photos/37996583811@N01/6158491035/
https://www.flickr.com/photos/37996583811@N01/6158491035/

Computational thinking is a kind of analytical thinking. It shares with mathematical
thinking in the general ways in which we might approach solving a problem. It shares
with engineering thinking in the general ways in which we might approach designing and
evaluating a large, complex system that operates within the constraints of the real world.
It shares with scientific thinking in the general ways in which we might approach
understanding computability, intelligence, the mind and human behaviour.

The main notion related to computational thinking is ​abstraction​. As already highlighted in the
aforementioned example in ​Figure 5​, the skill of abstracting situations and notions into symbols
is crucial in order to automatise the execution of certain tasks by means of a computer that is
responsible to interpret such abstractions. However, usually, we use these abstractions
unconsciously. One of the goals of computational thinking is to ​reshape the abstractions we
have ingested as consequence of our life experiences – that we are often unconsciously
reusing. Thus, being again fully conscious of such abstractions, we can use an appropriate
language for making them understandable to a computer, in order to automatise them.

Broadly speaking, the final goal of computational thinking is to make one think like a Computer
Scientist, even when dealing with common tasks. In the future, computational thinking will
become a course like Mathematics and Physics, it “will be an integral part of childhood
education” ​[Wing, 2008]​, and it will affect the way people think and learn and “the way other
learning takes place” ​[Papert, 1980]​.

Exercises
1. What are all the possible sentences that can be produced by using the regular grammar

introduced in ​Section “Historic hero: Noam Chomsky”​?
2. What is the result of applying the latest natural language definition of the Fibonacci

function in ​Section "Natural languages vs. programming languages"​ using “7” as input?
3. Write down two situations that are actually referring to the same pattern if analysed from

an abstract point of view, as introduced in ​Section "Abstraction is the key"​. What are
their common features?

Acknowledgements
I would like to thank some of the students of the course, ​Severin Josef Burg and Yordanka
Stoyanova, for having suggested corrections and improvements to the text of these lecture
notes.

https://github.com/SeverinJB

References
Bernardi, R. (2002). The Logical Approach in Linguistics. In Reasoning with Polarity in
Categorial Type Logic. Ph. D. Thesis, Utrecht University.
http://disi.unitn.it/~bernardi/Papers/thesis-chapter1.pdf​ (last visited May 30, 2017)

Campbell-Kelly, M. (2009). The Origin of Computing. Scientific American, 301 (September
2009): 62-69. DOI: https://doi.org/10.1038/scientificamerican0909-62 - also available at
http://www.cs.virginia.edu/~robins/The_Origins_of_Computing.pdf​ (last visited 20 August 2017)

Papert, S. (1980). Introduction: Computer for Children. In Mindstorms: children, computers, and
powerful ideas: 3-18. New York, USA: Basic Books, Inc. ISBN: 0-465-04627-4. Full text
available at ​http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf​ (last
visited 20 August 2017)

Roegel, D. (2010). The great logarithmic and trigonometric tables of the French Cadastre: a
preliminary investigation. Research Report. INRIA. ​https://hal.inria.fr/inria-00543946

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366
(1881): 3717. ​https://doi.org/10.1098/rsta.2008.0118

http://disi.unitn.it/~bernardi/Papers/thesis-chapter1.pdf
http://www.cs.virginia.edu/~robins/The_Origins_of_Computing.pdf
http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
https://hal.inria.fr/inria-00543946
https://doi.org/10.1098/rsta.2008.0118

