
Algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Algorithm; Ada Lovelace; Flowchart; Pseudocode

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
These lecture notes introduce the notion of algorithm and pseudocode, so as to provide the
initial tools for instructing a computer in executing a particular task. In addition, a particular kinds
of graphical pseudocode is introduced, i.e. the flowchart. The historic hero introduced in these
notes is Ada Lovelace, considered the first computer programmer. Her work in translating and
commenting a scholarly paper describing Babbage's Analytical Engine has been one of the
most important milestones of the Computer Science discipline.

Historic hero: Ada Lovelace
Ada Lovelace (shown in Figure 1) was a daughter of the poet Lord Byron, and was an English
mathematicians who became famous for her work on the Babbage's Analytical Engine. Despite
her father's habits, her mother, Anne Isabella Milbanke, strongly promoted Ada's interest in logic
and mathematics, even after the death of her father. One of the goals of her mother was to
prevent her to incur in the same insanity that characterised her father's life. However, the
creativity that was intrinsically tied up on Byron family manifested in a totally unpredictable way.

In 1833, she attended a party organised by Charles Babbage for presenting its Difference
Engine. She was so impressed by Babbage's invention that she started a correspondence with
him that spanned 27 years [Morais, 2013]. She was the English translator of the first article
about the Analytical Engine, that was written in French by Luigi Federico Menabrea, and that
she enriched with several annotations. Among these annotations, there was a description of

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Lord_Byron
https://en.wikipedia.org/wiki/Lord_Byron
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Difference_engine
https://en.wikipedia.org/wiki/Difference_engine
https://en.wikipedia.org/wiki/Difference_engine
https://en.wikipedia.org/wiki/Luigi_Federico_Menabrea
https://en.wikipedia.org/wiki/Luigi_Federico_Menabrea

how to use the Analytical Engine to calculate the Bernoulli numbers [Menabrea, 1842].
Technically speaking, this was the first computer program ever written (actually the first
algorithm of the whole history) and it has been created by Ada without even having the real
machine implemented – since the Analytical Engine was just a theoretical machine that was not
physically built by Babbage.

Figure 1. Portrait of Ada Lovelace. Source:

https://en.wikipedia.org/wiki/File:Ada_Lovelace_portrait.jpg.

However, her vision about the possible uses of the Analytical Engine went even further [Morais,
2013]:

https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/File:Ada_Lovelace_portrait.jpg

The operating mechanism can even be thrown into action independently of any object to
operate upon (although of course no result could then be developed). Again, it might act
upon other things besides number, were objects found whose mutual fundamental
relations could be expressed by those of the abstract science of operations, and which
should be also susceptible of adaptations to the action of the operating notation and
mechanism of the engine. Supposing, for instance, that the fundamental relations of
pitched sounds in the science of harmony and of musical composition were susceptible
of such expression and adaptations, the engine might compose elaborate and scientific
pieces of music of any degree of complexity or extent.

That “science of operations” is a reference to a particular field that was clearly named and
identified only after several years. In practice, Ada Lovelace was talking about Computer
Science one hundred years before its formal introduction. For her work in the field, Ada
Lovelace is recognised as the first computer programmer in history.

Algorithms and programmers
Before to introduce the main topic of these lecture notes, it would be worth to focus on simple
examples we usually face during our daily life. Figure 2 illustrates two examples of step-by-step
procedures we have to follow for preparing canapé crackers and for assembling a particular
lamp respectively. While the actual goal of the two examples is extremely different, since the
first one is a recipe while the other one is a set of instructions for assembling an utensil, they are
described in terms of a shared abstract notion: instructions for producing something starting
from some initial material we have, i.e. an algorithm.

Figure 2. Two pictures depicting a recipe (left) and the instruction for assembling a lamp (right).
Left picture by Phil! Gold, source: https://www.flickr.com/photos/phil_g/17282816/. Right picture

by Richard Eriksson, source: https://www.flickr.com/photos/sillygwailo/3183183727/.

The word algorithm is a combination of the Latin word algorismus (that is the Latinization of the
name Al-Khwarizmi, who was a great mathematician from Persia in the 8th century) and the
Greek word arithmos, meaning number. Broadly speaking, we can define an algorithm as an

https://www.flickr.com/photos/phil_g/17282816/
https://www.flickr.com/photos/sillygwailo/3183183727/
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi

abstraction of a step-by-step procedure that takes something as input and produces some
desired output [Wing, 2008]. Each algorithm is written in a specific language which is functional
to communicate its instruction to a computer (either human or machine) so as to obtain
something by processing some input material.

A computer programmer usually is a person who creates algorithms and specifies them in a
computer program according to a particular computer language – thus, the term computer is
here used for talking about an electronic computer. However, for what concerns the scope of
this course, we use the term computer programmer to refer to anyone that creates algorithms
that can be interpreted by any computer, being it a human or a machine.

Flowcharts
There is no standard language for describing an algorithm in a way that it is immediately
understandable by any computer. However, often Computer Scientists rely on a pseudocode
when they want to describe a particular algorithm, Broadly speaking, a pseudocode is an
informal language that could be interpreted easily by any computer, even if it is usually used for
communicating the steps of an algorithm to humans. While an algorithm described by means of
a pseudocode is not runnable by an electronic computer, it constructs are closely tied to the
ones that are typically defined, with a formal grammar, in programming languages.

In particular, any algorithm can be expressed in pseudocode and, in principle, that pseudocode
can be translated into different programming languages quite easily. The real difference is that,
usually, some passages in the pseudocode can be simplified by using even natural language
text, while one has to specify clearly every passage if one uses a programming language.

In this lecture notes, we use a particular graphical alternative to a common pseudocode which is
good for being easily understandable by humans: a flowchart. A flowchart is a particular kind of
diagram which can be used to write algorithms, and which relies on a small amount of widgets,
as illustrated in Table 1.

The goal of the algorithms we will develop during the initial part of the course must be
understood primarily by humans. Thus, a good way for checking if an algorithm one developed
(by means of a flowchart) can be interpretable by a computer is to ask a colleague to execute it
starting from a particular input – e.g. by writing down all the passages of the execution on a
piece of paper.

While such flowchart diagrams can be sketched out on a piece of paper, there exists also online
tools that allow you to create a flowchart by using an (electronic) computer. The one that has
been used to create all the diagrams in this lecture is called Draw.io, which is a free-to-use Web
application with a nice graphical user interface.

https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Flowchart
https://draw.io/

Widget Name Definition

Flowline The arrow is used to define the order in which the

operations are executed. The flow indicated by the
arrows begin in the starting terminal and ends in the
ending terminal (see next widget).

Terminal It indicates the beginning and ending of an algorithm.
It contains a text (usually, either “start” or “end”) so as
to disambiguate which role has the particular terminal
widget in the context of the algorithm.

Process It is used for expressing (usually one) instruction or
operation, that is executed and that can change the
current state of some variables used in the algorithm.
The text it includes depicts the instruction to execute.

Decision It depicts a conditional operation, where a condition is
checked and, depending on the value of some of the
variables involved in the algorithm, the execution
continues in a particular branch instead of another.
Usually, the this operation creates two possible
alternative branches: one to be followed whether the
condition considered is true, and the other in case the
condition is false.

Input / Output It allows one to specify possible input / output material
which is used / returned by the algorithm usually at
the beginning or end of its execution.

Table 1. The main widgets that can be used in a flowchart, and that are useful for writing an
algorithm.

Our first algorithm
The goal of today's lecture is to develop our first algorithm. It can be described informally by the
following natural language text: taking in input three different strings, i.e. two words and a
bibliographic entry of a published paper, return 2 if both the words are contained in the
bibliographic entry, 1 if only one of the words is contained in the bibliographic entry, and 0
otherwise.

An incomplete version
In the flowchart diagram model, each algorithm is defined by using two terminal widgets, that
identify the beginning and the end of the algorithm. The “start” terminal has one arrows starting

from it to the next instruction, while the “end” terminal can be reached by different points of the
algorithm, and thus it is linked by at least one arrow.

The first incomplete version of the algorithm, which is introduced in this subsection, simplifies a
bit the aforementioned instructions so as to show all the main widget that can be used for
creating an algorithm, without adding further complexities. In particular, we want just to say that
the algorithm takes in input only two strings, i.e. an input word and a bibliographic entry, and it
returns the number 1 if the the input word is contained in the bibliographic entry, otherwise 0 is
returned. This partial version of the algorithm is introduced in Figure 3.

Figure 3. The incomplete algorithm described by a simple flowchart.

In this partial version, several flowchart widgets have been used. In particular, except the “Start”
and “End” terminals introduced above, we have used three input / output widgets to get the
value specified as input of the algorithm and to returns “0” or “1” depending on such input. The
particular decision of what output value to return has been encoded by means of a decision
widget, where the input is analysed and, according to the particular situation, the specific “yes /
no” branch is followed.

The final algorithm
While the previous subsection introduced a first initial implementation of an incomplete version
of the algorithm, in this section a complete version of the algorithm is provided as a flowchart
diagram, shown in Figure 4. However, in order to do implement such algorithm with a flowchart,
we need to adopt all the widgets introduced in Table 1, by combining a sequence of process
widgets with decision widgets so as to implement the whole flow of the algorithm. It is worth
noting, though, that the flowchart presented here is just one possible approach to design the
original algorithm – other approaches can be indeed used and can be correct as well.

The first of the process widgets is used for initialising the value to be returned. It is executed
after the input widget and it prescribes to set a particular variable, i.e. the “result value”, to “0”,
which is the result that the algorithm should return if both of the input words are not contained in
the bibliographic entry. This process widget is followed by two sequential decision widgets, that
check the two conditions (i.e. whether the first word is contained in the bibliographic entry and
whether the second word is contained in it, respectively). In case both the conditions are not
passed, then the result value is returned as it has been set originally in the first process widget.
Otherwise, every time one of the conditions is passed, the result value is incremented by “1”.
These passages are responsible for the implementation of the algorithm as requested at the
beginning of this section.

Figure 4. The complete algorithm presented with a flowchart.

Exercises
1. What is the result of the execution of the algorithm in Figure 4 using "Peroni" ,

"HTML" , and "Peroni, S., Osborne, F., Di Iorio, A., Nuzzolese, A.

G., Poggi, F., Vitali, F., Motta, E. (2017). Research Articles

in Simplified HTML: a Web-first format for HTML-based scholarly

articles. PeerJ Computer Science 3: e132. e2513. DOI:

https://doi.org/10.7717/peerj-cs.132" as input values?
2. Write the flowchart of an algorithm that takes in input two objects and returns “yes”

whether the two objects are the same, otherwise it returns “no”.

3. The previous lecture notes, entitled “Introduction to Computational Thinking”, illustrate
two different algorithms, expressed in natural language, for implementing the Fibonacci
function. Create two distinct flowcharts so as to implement both of them.

References
Menabrea, L. F. (1842). Sketch of the Analytical Engine Invented by Charles Babbage – With
notes upon the Memoir by the Translator: Ada Augusta, Countess of Lovelace. Scientific
Memoirs, 3. http://www.fourmilab.ch/babbage/sketch.html

Morais, B. (2013). Ada Lovelace, the First Tech Visionary. The New Yorker.
https://www.newyorker.com/tech/elements/ada-lovelace-the-first-tech-visionary (last visited 2
November 2017)

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366
(1881): 3717. https://doi.org/10.1098/rsta.2008.0118

https://comp-think.github.io/2018-2019/lecture-notes/01%20-%20Introduction%20to%20Computational%20Thinking.pdf
http://www.fourmilab.ch/babbage/sketch.html
https://www.newyorker.com/tech/elements/ada-lovelace-the-first-tech-visionary
https://doi.org/10.1098/rsta.2008.0118

