
Recursion
Author(s)
Silvio Peroni​ – ​silvio.peroni@unibo.it
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Douglas Hofstadter; Little harmonic labyrinth; Recursive functions; Self-reference

Copyright notice
This work is licensed under a ​Creative Commons Attribution 4.0 International License​. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
These lecture notes introduce one of the main concepts related to Computational Thinking, i.e.
the recursion. The historic hero introduced in these notes is Douglas Hofstadter, who is a
cognitive scientist and the author of one of the best-selling didactic books on mathematics, logic
and self-references entitled ​Gödel, Escher, Bach: An Eternal Golden Braid​.

Historic hero: Douglas Hofstadter
Douglas Richard Hofstadter (see ​Figure 1​) is a cognitive scientist who researches primarily on
the concept of ​self-reference​, while being also very active in the fields of consciousness, art,
mathematics and physics. He is the author of ​Gödel, Escher, Bach: An Eternal Golden Braid
(a.k.a. ​GEB​) where he investigated in depth the concept of self-reference ​[Hofstadter, 1979]​. In
1980, he received the Pulitzer award for that book in the general nonfiction category.

The book has been listed as one of the main sources of inspiration for choosing to work in the
Computer Science field. In fact, while Hofstadter is not a computer scientist, one of the central
figure of his book is a famous logician, i.e. ​Kurt Gödel​, who provided several contributions also
related to the theoretical Computer Science field. In addition to that, since one of the main book
themes concerns a detailed discussion about the concept of ​intelligence​, the final part of the
book is entirely dedicated to the​ ​Artificial Intelligence​ field.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Self-reference
https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence

Figure 1. ​​Douglas Hofstadter in 2002. Picture by Maurizio Codogno, source:
https://commons.wikimedia.org/wiki/File:Hofstadter2002.jpg​.

Self-reference
GEB is structured according to an alternation of fictional dialogues (that are functional to the
various topics introduced in the book chapters) and several puzzles, that are used in order to
explain the important behaviour of formal mathematics by means of ​easy-listening examples.
One of the dialogues is of great interest for this lecture, i.e. the ​Little Harmonic Labyrinth​. In this
dialogue, the two main characters, i.e. Achilles and the Tortoise, are living a series of
adventures in various worlds starting from the inconsistent composite world described in the
Convex and Concave lithograph by ​Maurits Cornelis Escher​. In particular, by using two specific
drinks, i.e. the ​pushing-potion and the ​popping-tonic​, one is able to enter in a world depicted in a
paint and to exit from that world respectively. However, these pushing and popping operations
can be used within any world. Thus, if once entered in the world described in the ​Convex and

https://commons.wikimedia.org/wiki/File:Hofstadter2002.jpg
https://genius.com/Douglas-hofstadter-little-harmonic-labyrinth-annotated
https://genius.com/Douglas-hofstadter-little-harmonic-labyrinth-annotated
https://en.wikipedia.org/wiki/Convex_and_Concave
https://en.wikipedia.org/wiki/M._C._Escher

Concave lithograph, there is another paint depicting another world, one can drink the
pushing-potion to get into there. In this case, though, one needs to drink the popping-tonic twice
in order to come back to the real world. However, in this case, one could be not entirely sure if
the world from which one has started the journey is ​actually the real world, since one could have
come to there from another world (and just forgotten about it), and so on. This specific theme of
a journey in a stack of worlds has been addressed in several stories in the past, e.g. in
Christopher Nolan​'s 2010 movie entitled​ ​Inception​.

During the journey in this stack of worlds, Achilles and the Tortoise narrate (or are part of) a lot
of stories, which include citations and references as well as self-citations and self-references
that entangle and even change the whole narrative structure of the dialogue several times. One
of the situations that occur concerns the use, by Achilles, of a magic lamp that allows one to
evoke a genie. After rubbing it, a genie appears and Achilles asks him, as the first wish, the
possibility of having one hundred of wishes instead of the usual three. The genie answers that
he is not able to grant any meta-wish (i.e. a wish about a wish). However, the genie tries to
propose a solution to that request by evoking a new meta-genie from his meta-lamp, asking if
the meta-genie and, as a consequence, ​GOD (i.e. an acronym for ​GOD Over Djinn​, where the
word ​Djinn is use to designate all the possible genies and meta-genies that can exist) could
enable Achilles to ask for a meta-wish. In order to get an answer to the genie wish, the
meta-genie takes his own meta-meta-lamp so as to evoke the meta-meta-genie for asking him
the very same permission, as so on and so forth. Once, in the end, Achilles is granted with the
permission of asking for a meta-wish, he ​wishes that his wish would not be granted​.

This story contains several pieces of evidence of very well-known, and delicate, aspects of
mathematics and logic. For instance, the acronym ​GOD used in the story is a ​recursive
acronym. Which means that the definition of the acronym contains the acronym itself, thus
creating an infinite sequence of acronym rewriting if one tries to disentangled it. For instance,
GOD becomes ​GOD Over Djinn​, that becomes ​GOD Over Djinn Over Djinn​, that becomes ​GOD
Over Djinn Over Djinn Over Djinn​, and so on and so forth. In addition to that, also the wish
asked by Achilles contains a strange situation, since the wish that is asked concerns the denial
of the wish it self, thus creating a clear paradox by means of a ​self-reference​, i.e. the situation
where something (e.g. a sentence or a formula) refers to itself.

It is worth mentioning that these kinds of self-references may occur in any natural or formal
language. For instance, the (meta-)sentence “this sentence is false” is an example of such
paradoxical situation. Even graphical languages can describe situations which include
self-references. For instance, in Escher lithograph shown in ​Figure 2​, there are two hands that
are drawing each other, thus creating another clear paradox – even if the paradox is just
apparent since it exists only in the world depicted by the litograph, while in the real world there
is no paradox since the litograph has been actually created by Escher himself. Thus, the
warning here is the following: behave of self-references, since they can be powerful tools, but
they can also lead to paradoxes if they are not appropriately tamed.

https://en.wikipedia.org/wiki/Christopher_Nolan
https://en.wikipedia.org/wiki/Christopher_Nolan
https://en.wikipedia.org/wiki/Inception
https://en.wikipedia.org/wiki/Inception
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Self-reference
https://en.wikipedia.org/wiki/Self-reference

Figure 2. ​​Escher's lithograph entitled ​Drawing hands​. Source:
https://en.wikipedia.org/wiki/File:DrawingHands.jpg​.

Recursion
Generally speaking, we have a ​recursion when something is defined in terms of itself or of its
type – i.e. when its definition contains a self-reference. While it would seem strange at a first
analysis, we use recursions effectively in different academic fields, such as cognitive sciences,
linguistics, logic, mathematics, physics, and computer science. In this section, we provide some
cases where recursion is used.

In the cognitive science domain, for instance, the study of ​self-awareness involves recursion by
definition. In fact, the goal of this cognitive aspect concerns the ability to recognise ourselves as
individuals separate from the environment and from other individuals. Thus, it is an activity that
involves us in studying how ourself are positioned in the environment we leave. An additional
step from that aspects is known as ​self-consciousness​, which concerns the recognition of our
existence as cognitive agents. These merely philosophical aspects have been explored
extensively even in creative works, such as in comics (e.g. Masamune Shirow's ​Ghost in the
Shell​) and movies (e.g. Ridley Scott's​ ​Blade Runner​).

The formal grammars introduced in the very first lecture of this course can contain examples of
recursive rules as well. Actually, recursive rules are quite typical in the intended formal grammar
of programming languages. For instance, consider that we need to specify the formal grammar
for handling all the boolean operations ​​and ​, ​​or and ​​not ​, as introduced in the second lecture in
this course. A reasonable formal grammar is the following one:

1) <boolean_exp> ::= "(" "not" ​<boolean_exp> ")"
2) <boolean_exp> ::= "(" <boolean_exp> "or" <boolean_exp> ")"

https://en.wikipedia.org/wiki/File:DrawingHands.jpg
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Self-awareness
https://en.wikipedia.org/wiki/Self-awareness
https://en.wikipedia.org/wiki/Self-consciousness
https://en.wikipedia.org/wiki/Ghost_in_the_Shell_(manga)
https://en.wikipedia.org/wiki/Ghost_in_the_Shell_(manga)
https://en.wikipedia.org/wiki/Ghost_in_the_Shell_(manga)
https://en.wikipedia.org/wiki/Blade_Runner
https://en.wikipedia.org/wiki/Blade_Runner

3) <boolean_exp> ::= "(" <boolean_exp> "and" <boolean_exp> ")"

4) <boolean_exp> ::= "True"

5) <boolean_exp> ::= "False"

The non-terminal symbol ​​<boolean_exp> is used in the left-side and the right-side of three
rules, in a recursive way, for defining all the possible combination of the boolean operation that
can led to a boolean expression. By using the aforementioned grammar, it is possible, for
instance, to create complex boolean expressions like ​​(((True and (not False)) or

False) and True) ​. In fact, they are actually obtained by using the rules specified as follows:

<boolean_exp>

--3--> (<boolean_exp> and <boolean_exp>)

--4--> (<boolean_exp> and True)

--2--> ((<boolean_exp> or <boolean_exp>) and True)

--5--> ((<boolean_exp> or False) and True)

--3--> (((<boolean_exp> and <boolean_exp>) or False) and True)

--4--> (((True and <boolean_exp>) or False) and True)

--1--> (((True and (not <boolean_exp>)) or False) and True)

--5--> (((True and (not False)) or False) and True)

Even Noam Chomsky ​argued that recursion is a specific ability and essential property of human
language. For instance, each sentence can be a composition of a subject, a verb, and another
sentence as objective part, as shown by the following formal grammar:

1) <sentence> ::= <subj> <verb> <sentence>

2) <sentence> ::= <subj> <verb> "books"

3) <subj> ::= "Alice"

4) <subj> ::= "Bob"

5) <subj> ::= "Christine" ​
6) <verb> ::= "thinks"

7) <verb> ::= "said"

8) <verb> ::= "read"

According to the aforementioned rules, and in particular the first one that allows us to build a
sequence of linked sentences, it would be possible to write a composite sentence like “​Alice
thinks that Bob said that Christine read books​”. This is possible by applying the aforementioned
rules as follows:

<sentence>

--1--> <subj> <verb> <sentence>

--3--> Alice <verb> <sentence>

--6--> Alice thinks <sentence>

--1--> Alice thinks <subj> <verb> <sentence>

https://en.wikipedia.org/wiki/Recursion#In_language
https://en.wikipedia.org/wiki/Recursion#In_language

--4--> Alice thinks Bob <verb> <sentence>

--7--> Alice thinks Bob said <sentence>

--2--> Alice thinks Bob said <subj> <verb> books

--5--> Alice thinks Bob said Christine <verb> books

--8--> Alice thinks Bob said Christine read books

Similar recursive situations can be found also in physics, and they concern well-known
scenarios that can happen in our daily life, such as those ones introduced in ​Figure 3​. In
particular, in the left picture is depicted a situation known as ​infinity mirror​, which is created by
positioning two mirrors one in front of the other, so as to reflect an image indefinitely. On the
other hand, the right picture is portraying Jimi Hendrix who mastered the use of the ​Larsen
effect​, where an audio signal received by an audio input device (in his case, the one recorded
by the guitar pickup) is amplified by an audio output device (e.g. a speaker), and that amplified
signal is then received again by the input device, and so forth, so as to create an audio loop.

Figure 3. ​​Two example of recursion in real-life situations: the ​infinite mirror​ (left) and the ​Larsen

effect​ (right). Left picture by Elsemuko, source:
https://en.wikipedia.org/wiki/File:Infinity_Mirror_Effect.jpg​. Right picture source:

https://en.wikipedia.org/wiki/File:Jimi_Hendrix_1967_uncropped.jpg​.

Recursive functions
As anticipated in the previous section, the ​recursion is also used (quite extensively) also in
Computer Science​, and it represents, technically speaking, an alternative to the iteration. In
practice, it is used when a solution to a particular computational problem depends on the partial
solutions of smaller instances of the same problem. In particular, Computer Scientists –
recognised as wizards by the general audience a few times ​[Tyler, 2013] – have developed
some approaches to tame recursion so as to avoid infinite loops, and thus to use it within
algorithms.

https://en.wikipedia.org/wiki/Infinity_mirror
https://en.wikipedia.org/wiki/Audio_feedback
https://en.wikipedia.org/wiki/Audio_feedback
https://en.wikipedia.org/wiki/Audio_feedback
https://en.wikipedia.org/wiki/File:Infinity_Mirror_Effect.jpg
https://en.wikipedia.org/wiki/File:Jimi_Hendrix_1967_uncropped.jpg
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)

In practice, an algorithm has a recursive behaviour when it has one or more ​basic cases​, which
describe the terminating scenarios that do not use any recursion to produce the answer to a
specific (sub-)problem. In addition to these basic cases, the recursive algorithm must have, as
well, at least one ​recursion step​, which is where the same algorithm is executed again with a
different (and, usually, reduced) input. ​Listing 1 shows the generic skeleton of a recursive
algorithm with one basic condition and one recursive step.

def <function>(<param_1>, <param_2>, ...):

 if <base_case_condition>:

 # do something and then…

 return <value>

 else:

 # do something and then… execute the recursive step

 result = <function>(<param_a>, <param_b>, ...)

 # the result of the recursive step is combined

 # somehow with other information, and then…

 return <value> # resulting from the use of recursion

Listing 1. ​​The general structure of a recursive algorithm, implemented as Python function.

It is worth mentioning that the basic case is crucial for allowing the algorithm to stop a certain
point. Usually, avoiding the basic case means to create an algorithm that runs forever. For
instance, in ​Listing 2 there is a recursive implementation of the ​run_forever function we have
shown in one previous lecture. In this case, the only thing that such recursive algorithm does in
its body is to call itself again, thus creating a loop of calls that never ends.

def run_forever_recursive():

 run_forever_recursive()

Listing 2. ​​A function that never stops created by means of a recursion step – no basic cases
are specified in this example, that is usually a sign that the recursive algorithm does not stop.

The source code of this listing is available ​as part of the material of the course​.

An example of a simple and complete (basic case + recursive step) recursive algorithm that
solves a particular computational problem is that of the multiplication operation. In particular, the
multiplication of two integers can be defined as the sum of the first number with itself as many
times as indicated by the other number, e.g.: 3 ⋅ 4 = 3 + 3 + 3 + 3. However, looking carefully at
the behaviour of this operation, one can also decouple it in terms of a sequence of
multiplications summed with each other. In fact n​1 ⋅ n​2 = n​1 + (n​1 ⋅ (n​2 - 1)) and, by applying the
same rule, we can then say that n​1 + (n​1 ⋅ (n​2 - 1)) = n​1 + (n​1 + (n​1 ⋅ ((n​2 - 1) - 1))), and so forth
until we do not multiply the first number by ​0​, which is the basic case. For instance, 3 ⋅ 4 can be
rewritten as follows by means of the aforementioned rule: 3 ⋅ 4 = 3 + (3 ⋅ 3) = 3 + (3 + (3 ⋅ 2)) =
3 + (3 + (3 + (3 ⋅ 1))) = 3 + (3 + (3 + (3 + (3 ⋅ 0)))) = 3 + 3 + 3 + 3 + 0 = 12. This mechanism for

http://comp-think.github.io/2018-2019/python/run_forever_recursive.py

defining the multiplication is entirely based on a recursive approach, which is illustrated in
Listing 3​.

Test case for the algorithm

def test_multiplication(int_1, int_2, expected):

 result = multiplication(int_1, int_2)

 if expected == result:

 return True

 else:

 return False

Code of the algorithm

def multiplication(int_1, int_2):

 if int_2 == 0:

 return 0

 else:

 return int_1 + multiplication(int_1, int_2 - 1)

print(test_multiplication(0, 0, 0))

print(test_multiplication(1, 0, 0))

print(test_multiplication(5, 7, 35))

Listing 3. ​​A recursive function for calculating the multiplication between two non-negative
integers, accompanied by the related test case. The source code of this listing is available ​as

part of the material of the course​.

Exercises
1. Define a recursive function ​def exponentiation(base_number, exponent) for

implementing the exponentiation operation, and test (by implementing the related test
case) it on the following inputs: 3​4​, 17​1​, and 2​0​.

2. Define a recursive function ​def fib(n) that implements the algorithm to find the n​th
Fibonacci number – where if ​n is less than or equal to 0, then 0 is returned as result; if ​n
is equal to 1, then 1 is returned; otherwise, return the sum of the same function called
with ​n-1 ​ and ​n-2 ​ as input. Please accompany the function with the related test case.

Acknowledgements
I would like to thank a student of the course, ​Severin Josef Burg​, for having suggested
corrections and improvements to the text of these lecture notes.

http://comp-think.github.io/2018-2019/python/multiplication.py
http://comp-think.github.io/2018-2019/python/multiplication.py
https://github.com/SeverinJB

References
Hofstadter, D. R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books. ISBN:
0-465-02656-7, also available at ​https://www.physixfan.com/wp-content/files/GEBen.pdf

Tyler, J. (2013). The magic of coding: Why programmers are the modern-day wizards. Medium.
https://medium.com/@joshuatyler/the-magic-of-coding-30e58ce31032​ (last visited 20 November
2017)

https://www.physixfan.com/wp-content/files/GEBen.pdf
https://medium.com/@joshuatyler/the-magic-of-coding-30e58ce31032

