
Recursion 
Author(s) 
Silvio Peroni​ – ​silvio.peroni@unibo.it  
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy 
 
Keywords 
Douglas Hofstadter; Little harmonic labyrinth; Recursive functions; Self-reference 
 
Copyright notice 
This work is licensed under a ​Creative Commons Attribution 4.0 International License​. You are              
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.                 
remix, transform, and build upon the material) for any purpose, even commercially, under the              
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,               
and indicate if changes were made. You may do so in any reasonable manner, but not in any                  
way that suggests the licensor endorses you or your use. The licensor cannot revoke these               
freedoms as long as you follow the license terms. 

Abstract 
These lecture notes introduce one of the main concepts related to Computational Thinking, i.e.              
the recursion. The historic hero introduced in these notes is Douglas Hofstadter, who is a               
cognitive scientist and the author of one of the best-selling didactic books on mathematics, logic               
and self-references entitled ​Gödel, Escher, Bach: An Eternal Golden Braid​. 

Historic hero: Douglas Hofstadter 
Douglas Richard Hofstadter (see ​Figure 1​) is a cognitive scientist who researches primarily on              
the concept of ​self-reference​, while being also very active in the fields of consciousness, art,               
mathematics and physics. He is the author of ​Gödel, Escher, Bach: An Eternal Golden Braid               
(a.k.a. ​GEB​) where he investigated in depth the concept of self-reference ​[Hofstadter, 1979]​. In              
1980, he received the Pulitzer award for that book in the general nonfiction category. 
 
The book has been listed as one of the main sources of inspiration for choosing to work in the                   
Computer Science field. In fact, while Hofstadter is not a computer scientist, one of the central                
figure of his book is a famous logician, i.e. ​Kurt Gödel​, who provided several contributions also                
related to the theoretical Computer Science field. In addition to that, since one of the main book                 
themes concerns a detailed discussion about the concept of ​intelligence​, the final part of the               
book is entirely dedicated to the​ ​Artificial Intelligence​ field. 
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Figure 1. ​​Douglas Hofstadter in 2002. Picture by Maurizio Codogno, source: 
https://commons.wikimedia.org/wiki/File:Hofstadter2002.jpg​. 

Self-reference 
GEB is structured according to an alternation of fictional dialogues (that are functional to the               
various topics introduced in the book chapters) and several puzzles, that are used in order to                
explain the important behaviour of formal mathematics by means of ​easy-listening examples.            
One of the dialogues is of great interest for this lecture, i.e. the ​Little Harmonic Labyrinth​. In this                  
dialogue, the two main characters, i.e. Achilles and the Tortoise, are living a series of               
adventures in various worlds starting from the inconsistent composite world described in the             
Convex and Concave lithograph by ​Maurits Cornelis Escher​. In particular, by using two specific              
drinks, i.e. the ​pushing-potion and the ​popping-tonic​, one is able to enter in a world depicted in a                  
paint and to exit from that world respectively. However, these pushing and popping operations              
can be used within any world. Thus, if once entered in the world described in the ​Convex and                  
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Concave lithograph, there is another paint depicting another world, one can drink the             
pushing-potion to get into there. In this case, though, one needs to drink the popping-tonic twice                
in order to come back to the real world. However, in this case, one could be not entirely sure if                    
the world from which one has started the journey is ​actually the real world, since one could have                  
come to there from another world (and just forgotten about it), and so on. This specific theme of                  
a journey in a stack of worlds has been addressed in several stories in the past, e.g. in                  
Christopher Nolan​'s 2010 movie entitled​ ​Inception​. 
 
During the journey in this stack of worlds, Achilles and the Tortoise narrate (or are part of) a lot                   
of stories, which include citations and references as well as self-citations and self-references             
that entangle and even change the whole narrative structure of the dialogue several times. One               
of the situations that occur concerns the use, by Achilles, of a magic lamp that allows one to                  
evoke a genie. After rubbing it, a genie appears and Achilles asks him, as the first wish, the                  
possibility of having one hundred of wishes instead of the usual three. The genie answers that                
he is not able to grant any meta-wish (i.e. a wish about a wish). However, the genie tries to                   
propose a solution to that request by evoking a new meta-genie from his meta-lamp, asking if                
the meta-genie and, as a consequence, ​GOD (i.e. an acronym for ​GOD Over Djinn​, where the                
word ​Djinn is use to designate all the possible genies and meta-genies that can exist) could                
enable Achilles to ask for a meta-wish. In order to get an answer to the genie wish, the                  
meta-genie takes his own meta-meta-lamp so as to evoke the meta-meta-genie for asking him              
the very same permission, as so on and so forth. Once, in the end, Achilles is granted with the                   
permission of asking for a meta-wish, he ​wishes that his wish would not be granted​.  
 
This story contains several pieces of evidence of very well-known, and delicate, aspects of              
mathematics and logic. For instance, the acronym ​GOD used in the story is a ​recursive               
acronym. Which means that the definition of the acronym contains the acronym itself, thus              
creating an infinite sequence of acronym rewriting if one tries to disentangled it. For instance,               
GOD becomes ​GOD Over Djinn​, that becomes ​GOD Over Djinn Over Djinn​, that becomes ​GOD               
Over Djinn Over Djinn Over Djinn​, and so on and so forth. In addition to that, also the wish                   
asked by Achilles contains a strange situation, since the wish that is asked concerns the denial                
of the wish it self, thus creating a clear paradox by means of a ​self-reference​, i.e. the situation                  
where something (e.g. a sentence or a formula) refers to itself. 
 
It is worth mentioning that these kinds of self-references may occur in any natural or formal                
language. For instance, the (meta-)sentence “this sentence is false” is an example of such              
paradoxical situation. Even graphical languages can describe situations which include          
self-references. For instance, in Escher lithograph shown in ​Figure 2​, there are two hands that               
are drawing each other, thus creating another clear paradox – even if the paradox is just                
apparent since it exists only in the world depicted by the litograph, while in the real world there                  
is no paradox since the litograph has been actually created by Escher himself. Thus, the               
warning here is the following: behave of self-references, since they can be powerful tools, but               
they can also lead to paradoxes if they are not appropriately tamed. 
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Figure 2. ​​Escher's lithograph entitled ​Drawing hands​. Source: 
https://en.wikipedia.org/wiki/File:DrawingHands.jpg​. 

Recursion 
Generally speaking, we have a ​recursion when something is defined in terms of itself or of its                 
type – i.e. when its definition contains a self-reference. While it would seem strange at a first                 
analysis, we use recursions effectively in different academic fields, such as cognitive sciences,             
linguistics, logic, mathematics, physics, and computer science. In this section, we provide some             
cases where recursion is used. 
 
In the cognitive science domain, for instance, the study of ​self-awareness involves recursion by              
definition. In fact, the goal of this cognitive aspect concerns the ability to recognise ourselves as                
individuals separate from the environment and from other individuals. Thus, it is an activity that               
involves us in studying how ourself are positioned in the environment we leave. An additional               
step from that aspects is known as ​self-consciousness​, which concerns the recognition of our              
existence as cognitive agents. These merely philosophical aspects have been explored           
extensively even in creative works, such as in comics (e.g. Masamune Shirow's ​Ghost in the               
Shell​) and movies (e.g. Ridley Scott's​ ​Blade Runner​). 
 
The formal grammars introduced in the very first lecture of this course can contain examples of                
recursive rules as well. Actually, recursive rules are quite typical in the intended formal grammar               
of programming languages. For instance, consider that we need to specify the formal grammar              
for handling all the boolean operations ​​and ​, ​​or and ​​not ​, as introduced in the second lecture in                 
this course. A reasonable formal grammar is the following one: 
 
1) <boolean_exp> ::= "(" "not" ​<boolean_exp> ")" 
2) <boolean_exp> ::= "(" <boolean_exp> "or" <boolean_exp> ")" 
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3) <boolean_exp> ::= "(" <boolean_exp> "and" <boolean_exp> ")" 

4) <boolean_exp> ::= "True" 

5) <boolean_exp> ::= "False" 

 
The non-terminal symbol ​​<boolean_exp> is used in the left-side and the right-side of three              
rules, in a recursive way, for defining all the possible combination of the boolean operation that                
can led to a boolean expression. By using the aforementioned grammar, it is possible, for               
instance, to create complex boolean expressions like ​​(((True and (not False)) or            

False) and True) ​. In fact, they are actually obtained by using the rules specified as follows: 
 
<boolean_exp> 

--3--> (<boolean_exp> and <boolean_exp>) 

--4--> (<boolean_exp> and True) 

--2--> ((<boolean_exp> or <boolean_exp>) and True) 

--5--> ((<boolean_exp> or False) and True) 

--3--> (((<boolean_exp> and <boolean_exp>) or False) and True) 

--4--> (((True and <boolean_exp>) or False) and True) 

--1--> (((True and (not <boolean_exp>)) or False) and True) 

--5--> (((True and (not False)) or False) and True) 

 
Even Noam Chomsky ​argued that recursion is a specific ability and essential property of human               
language. For instance, each sentence can be a composition of a subject, a verb, and another                
sentence as objective part, as shown by the following formal grammar: 
 
1) <sentence> ::= <subj> <verb> <sentence> 

2) <sentence> ::= <subj> <verb> "books" 

3) <subj> ::= "Alice" 

4) <subj> ::= "Bob" 

5) <subj> ::= "Christine" ​ 
6) <verb> ::= "thinks" 

7) <verb> ::= "said" 

8) <verb> ::= "read" 

 
According to the aforementioned rules, and in particular the first one that allows us to build a                 
sequence of linked sentences, it would be possible to write a composite sentence like “​Alice               
thinks that Bob said that Christine read books​”. This is possible by applying the aforementioned               
rules as follows: 
 
<sentence> 

--1--> <subj> <verb> <sentence> 

--3--> Alice <verb> <sentence> 

--6--> Alice thinks <sentence> 

--1--> Alice thinks <subj> <verb> <sentence> 
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--4--> Alice thinks Bob <verb> <sentence> 

--7--> Alice thinks Bob said <sentence> 

--2--> Alice thinks Bob said <subj> <verb> books 

--5--> Alice thinks Bob said Christine <verb> books 

--8--> Alice thinks Bob said Christine read books 

 
Similar recursive situations can be found also in physics, and they concern well-known             
scenarios that can happen in our daily life, such as those ones introduced in ​Figure 3​. In                 
particular, in the left picture is depicted a situation known as ​infinity mirror​, which is created by                 
positioning two mirrors one in front of the other, so as to reflect an image indefinitely. On the                  
other hand, the right picture is portraying Jimi Hendrix who mastered the use of the ​Larsen                
effect​, where an audio signal received by an audio input device (in his case, the one recorded                 
by the guitar pickup) is amplified by an audio output device (e.g. a speaker), and that amplified                 
signal is then received again by the input device, and so forth, so as to create an audio loop. 
 

 
Figure 3. ​​Two example of recursion in real-life situations: the ​infinite mirror​ (left) and the ​Larsen 

effect​ (right). Left picture by Elsemuko, source: 
https://en.wikipedia.org/wiki/File:Infinity_Mirror_Effect.jpg​. Right picture source: 

https://en.wikipedia.org/wiki/File:Jimi_Hendrix_1967_uncropped.jpg​. 
 

Recursive functions 
As anticipated in the previous section, the ​recursion is also used (quite extensively) also in               
Computer Science​, and it represents, technically speaking, an alternative to the iteration. In             
practice, it is used when a solution to a particular computational problem depends on the partial                
solutions of smaller instances of the same problem. In particular, Computer Scientists –             
recognised as wizards by the general audience a few times ​[Tyler, 2013] – have developed               
some approaches to tame recursion so as to avoid infinite loops, and thus to use it within                 
algorithms. 
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In practice, an algorithm has a recursive behaviour when it has one or more ​basic cases​, which                 
describe the terminating scenarios that do not use any recursion to produce the answer to a                
specific (sub-)problem. In addition to these basic cases, the recursive algorithm must have, as              
well, at least one ​recursion step​, which is where the same algorithm is executed again with a                 
different (and, usually, reduced) input. ​Listing 1 shows the generic skeleton of a recursive              
algorithm with one basic condition and one recursive step. 
 
def <function>(<param_1>, <param_2>, ...): 

    if <base_case_condition>: 

        # do something and then…  

        return <value> 

    else: 

        # do something and then… execute the recursive step 

        result = <function>(<param_a>, <param_b>, ...) 

  

        # the result of the recursive step is combined  

        # somehow with other information, and then…  

        return <value>  # resulting from the use of recursion 

Listing 1. ​​The general structure of a recursive algorithm, implemented as Python function. 
 
It is worth mentioning that the basic case is crucial for allowing the algorithm to stop a certain                  
point. Usually, avoiding the basic case means to create an algorithm that runs forever. For               
instance, in ​Listing 2 there is a recursive implementation of the ​run_forever function we have               
shown in one previous lecture. In this case, the only thing that such recursive algorithm does in                 
its body is to call itself again, thus creating a loop of calls that never ends. 
 
def run_forever_recursive(): 

    run_forever_recursive() 

Listing 2. ​​A function that never stops created by means of a recursion step – no basic cases 
are specified in this example, that is usually a sign that the recursive algorithm does not stop. 

The source code of this listing is available ​as part of the material of the course​. 
 

An example of a simple and complete (basic case + recursive step) recursive algorithm that               
solves a particular computational problem is that of the multiplication operation. In particular, the              
multiplication of two integers can be defined as the sum of the first number with itself as many                  
times as indicated by the other number, e.g.: 3 ⋅ 4 = 3 + 3 + 3 + 3. However, looking carefully at                       
the behaviour of this operation, one can also decouple it in terms of a sequence of                
multiplications summed with each other. In fact n​1 ⋅ n​2 = n​1 + (n​1 ⋅ (n​2 - 1)) and, by applying the                      
same rule, we can then say that n​1 + (n​1 ⋅ (n​2 - 1)) = n​1 + (n​1 + (n​1 ⋅ ((n​2 - 1) - 1))), and so forth                             
until we do not multiply the first number by ​0​, which is the basic case. For instance, 3 ⋅ 4 can be                      
rewritten as follows by means of the aforementioned rule: 3 ⋅ 4 = 3 + (3 ⋅ 3) = 3 + (3 + (3 ⋅ 2)) =                           
3 + (3 + (3 + (3 ⋅ 1))) = 3 + (3 + (3 + (3 + (3 ⋅ 0)))) = 3 + 3 + 3 + 3 + 0 = 12. This mechanism for                                    
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defining the multiplication is entirely based on a recursive approach, which is illustrated in              
Listing 3​. 
 
# Test case for the algorithm 

def test_multiplication(int_1, int_2, expected): 

    result = multiplication(int_1, int_2) 

    if expected == result: 

        return True 

    else: 

        return False 

 

 

# Code of the algorithm 

def multiplication(int_1, int_2): 

    if int_2 == 0: 

        return 0 

    else: 

        return int_1 + multiplication(int_1, int_2 - 1) 

 

 

print(test_multiplication(0, 0, 0)) 

print(test_multiplication(1, 0, 0)) 

print(test_multiplication(5, 7, 35)) 

Listing 3. ​​A recursive function for calculating the multiplication between two non-negative 
integers, accompanied by the related test case. The source code of this listing is available ​as 

part of the material of the course​. 

Exercises 
1. Define a recursive function ​def exponentiation(base_number, exponent) for        

implementing the exponentiation operation, and test (by implementing the related test           
case) it on the following inputs: 3​4​, 17​1​, and 2​0​. 

2. Define a recursive function ​def fib(n) that implements the algorithm to find the n​th              
Fibonacci number – where if ​n is less than or equal to 0, then 0 is returned as result; if ​n                     
is equal to 1, then 1 is returned; otherwise, return the sum of the same function called                 
with ​n-1 ​ and ​n-2 ​ as input. Please accompany the function with the related test case.  
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