
Dynamic programming algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Fibonacci; Golden Ratio; Keeping track of partial solutions; Rabbits

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
These lecture notes introduce the notion of dynamic programming algorithms with the
implementation of one algorithm of this kind, which calculates Fibonacci numbers. The historic
hero introduced in these notes is Leonardo of Pisa, a.k.a. Fibonacci, who was one of the most
important and prominent mathematicians of the Middle Ages.

Historic hero: Fibonacci
Leonardo of Pisa, a.k.a. Fibonacci (depicted in Figure 1), was a mathematician who first
introduced in Europe the Hindu-Arabic number system, which is the numeral system that is
commonly used worldwide even today. This introduction was possible thanks to the publication
of his book in 1202, Liber Abaci (Book of Calculation in English) [Fibonacci, 1202], which
describes how to use such numeral system for addressing situations related to commerce, and
for solving generic mathematical problems.

One of the main contributions of Fibonacci in his book was a small note about a particular
infinite sequence of numbers, named after him, that described ideally the number of
male-female pairs of rabbits at a given month. The Fibonacci sequence, and the numbers it
contains (i.e. 1 1 2 3 5 8 13 21 34 55 ...), has very peculiar properties that have been studied in
the past by mathematicians and also historians of science. It is calculated with a very simple
(and recursive!) approach: the Fibonacci number at a certain month n is equal to the sum

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://it.wikipedia.org/wiki/Leonardo_Fibonacci
https://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
https://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
https://en.wikipedia.org/wiki/Liber_Abaci
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number

between the Fibonacci number at month n-1 and that one at month n-2, as shown in Formula 1
– where fib(0) and fib(1) are always equal to 0 and 1 respectively.

Figure 1. A portrait of Leonardo Pisano, also known as Fibonacci. Source:

https://commons.wikimedia.org/wiki/File:Fibonacci2.jpg.

ib(n) ib(n) ib(n)f = f − 1 + f − 2
Formula 1

One of the most famous property (actually, it could be even classified as a proper mystery), that
Fibonacci did not mention it his book, is the relation that exists between the Fibonacci sequence
and the golden ratio. Mathematically speaking, two quantities are in the golden ratio when their
ratio is the same as the ratio of their sum to the larger quantity. This value is defined in Formula
2, where the quantity a is greater than the quantity b.

https://commons.wikimedia.org/wiki/File:Fibonacci2.jpg
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Golden_ratio

= Φ .618033...b

a = a
a+b def = 1

Formula 2

While this seems a quite simple ratio at a first sight, it is actually defined by an irrational number.
In addition, even if this number sounds to be a quite abstract and a pure mathematical notion, it
has been found to be used and observed in several different domains, such as architecture (e.g.
the Pantheon in Athens), arts (e.g. Leonardo's drawings in De divina proportione), and nature
(e.g. the arrangement of leaves in plants).

The Fibonacci sequence is somehow closely related to the golden ratio. In fact, taken a number
in the sequence and dividing it by the previous one in the same sequence will return an
approximation of the golden ratio Φ, and the higher the numbers, the more precise is the value:

● 5 / 3 = 1.66666...
● 8 / 5 = 1.6
● 13 / 8 = 1.625
● 21 / 13 = 1.61538...
● 34 / 21 = 1.61904...
● 55 / 34 = 1.61764...
● …

Remembering solutions to sub-problems
In the previous lecture, we have introduced how the divide and conquer algorithms generally
work. They are mainly based on four steps, i.e. the handling of one or more base cases plus the
divide, conquer (i.e. the recursive action), and combine steps, which actually are the heart of the
algorithm. We have explicitly said that such approach is, in the most cases, more efficient than
the simpler brute force approach, at least for solving computational problems that can be split in
two or more smaller problems of the same type.

However, some computational problems present even an additional characteristics. Sometimes,
not only they can be split into sub-problems, but also some of these sub-problems are repeated
during the execution. This can even happen when we have to sort books. For instance, suppose
we have the following list of books with six items to sort: list(["Coraline", "American

Gods", "Neverwhere", "Neverwhere", "American Gods", "Coraline"]) . This
is a quite peculiar list, since it contains two copies of the same book. In this case, the application
of the divide step of the merge sort returns two sublists that contains, basically, different copies
of the same books, even if in different order: the left list will be list(["Coraline",

"American Gods", "Neverwhere"]) while the right one will be list(["Neverwhere",

"American Gods", "Coraline"]) . However, even if the order between the books in the
two sublists is different, we are pretty sure that the final result, i.e. the two lists ordered, will be
exactly the same.

https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Parthenon
https://en.wikipedia.org/wiki/Parthenon
https://en.wikipedia.org/wiki/De_divina_proportione
https://en.wikipedia.org/wiki/Phyllotaxis
https://en.wikipedia.org/wiki/Phyllotaxis

Considering the way we have developed the merge sort algorithm, we call recursively the
algorithm twice (in the conquer step), even if we could, in principle, run it just once, i.e. on the
left list and then to reuse the positions obtained for the books in such list for positioning the
books in the right list. This approach could be done without executing the algorithm on the right
list, and, thus, could avoid spending additional time in ordering something that we have already
learned how to order. However, this is possible only if we use some mechanism to keep track of
the operation we have already done, and to reuse a result of a previous problem again and
directly, without any further calculation.

This kind of approach is known as dynamic programming. Dynamic programming is an
algorithmic technique that splits the original computational problem to solve in two or more
smaller problems of the same type, until they became solvable directly by executing a simple set
of operations, and stores the solutions to these subproblems for reusing them, if they reoccur.
In this way, if the same problem will occur the next time, one can just look at the
previously-computed solution and reuse it directly, usually saving a huge amount of computation
time. In particular, the dynamic programming approach is based on the following (informal)
steps:

1. [base case: solution exists] return the solution calculated previously to the problem if
this is the case; otherwise

2. [base case: address directly] address the problem directly on the input material if it is
actually depicting an easy-to-solve problem; otherwise

3. [divide] split the input material into two or more balanced parts, each depicting a
sub-problem of the original one;

4. [conquer] run the same algorithm recursively for every balanced part obtained in the
previous step;

5. [combine] reconstruct the final solution of the problem by means of the partial solutions
obtained from running the algorithms on the smaller parts of the input material;

6. [memorize] store the solution to the problem so as to reuse if needed by other recursive
calls.

In the next section, we show how the same computational problem is handled by means of a
divide and conquer approach, and how a dynamic programming mechanism decreases the
number of operations that must be executed to have the same result as the outcome.

Fibonacci sequence
In Section "Historic hero: Fibonacci" we have introduced a particular sequence of integer
numbers, i.e. the Fibonacci sequence, that has been used by Fibonacci himself for providing a
theoretical and approximated way for describing the evolution of a population of rabbits during
months. The sequence, of course, is composed by specific numbers, and the calculation of
these numbers is the particular problem we want to solve in this section:

https://en.wikipedia.org/wiki/Dynamic_programming

Computational problem: calculate the Fibonacci number at a certain month.

As shown in Section "Historic hero: Fibonacci", each number in the Fibonacci sequence is
defined recursively as the sum of the previous two numbers in the same sequence. Thus, this
definition seems to suggest that it would be possible to write a divide and conquer algorithm in
order to address this problem effectively. In this case, we use, as base cases, the Fibonacci
number calculated for the months 0 and 1, that returns 0 and 1 respectively. Figure 2 shows the
execution of a plausible algorithm that takes the month 4 in input, and executes recursively the
same algorithm on the smaller inputs as defined by the definition of Fibonacci numbers until the
base case is reached.

Figure 2. The application of a divide and conquer approach for obtaining the 4th number in the
Fibonacci sequence. We use coloured rectangles for showing identical calls to the Fibonacci
algorithm with the same input. The numbers in the labels in the arrows indicate what is the

sequence of execution of the various calls.

As shown in Figure 2, however, a lot of calculations are actually repeated multiple times. For
instance, the executions of fib(2) and fib(0) are repeated twice each, while fib(1) is actually
repeated three times. The implementation of this algorithm in Python is shown in Listing 1, and it
is described by the following steps:

1. [base case] if the input number for which to find the Fibonacci number is 0 or 1, then
return such input number; otherwise

2. [divide] obtain the two input numbers according to the Fibonacci definition;
3. [conquer] run the same algorithm recursively for each of the numbers obtained

in the previous step;
4. [combine] sum the results of the partial solutions obtained by running the two

executions of the algorithm recursively.

Test case for the algorithm

def test_fib_dc(n, expected):

 result = fib_dc(n)

 if expected == result:

 return True

 else:

 return False

Code of the algorithm

def fib_dc(n):

 if n == 0 or n == 1: # base case

 return n

 else: # recursive step

 return fib_dc(n-1) + fib_dc(n-2)

print(test_fib_dc(0, 0))

print(test_fib_dc(1, 1))

print(test_fib_dc(2, 1))

print(test_fib_dc(7, 13))

Listing 1. The implementation, in Python, of the divide and conquer algorithm for calculating the
Fibonacci number. The source code of this listing is available as part of the material of the

course.

One can avoid to repeat previously-computed solutions by adopting a dynamic programming
approach. Of course, part of the body of such algorithm is very similar to the aforementioned
divide and conquer one. The real difference is in two additional steps, the first one checking if
that solution has been already calculated, and the last one that stores a new solution in memory
for reusing it. Figure 3 describes the execution of the algorithm to find the Fibonacci number at
month 4 by reusing solutions that have been previously stored.

While there are several possible ways to store a solution to a problem, the suggestion we
provide in this case is to use a dictionary, specifying the key as the input number (i.e. the
month) used to calculate the Fibonacci number, and the value as the result of such calculation.
However, in order to implement the algorithm, we need to introduce some additional operations
for managing dictionary appropriately.

First of all, we need to check if a certain key has been already included in the dictionary. This
could be already possible by using the get method of dictionaries, i.e.
<dictionary>.get(<key>) , that has been introduced in a previous lecture. In particular, it
will return a value if the key is included in the dictionary, otherwise it will return None. However,

http://comp-think.github.io/2018-2019/python/fib_dc.py
http://comp-think.github.io/2018-2019/python/fib_dc.py

there is another way for checking the inclusion of a key in a dictionary, which is more efficient
and even more natural to write and remember. In particular, we can use the comparison
operations in and not in that we already introduced with strings: <key> in

<dictionary> and <key> not in <dictionary> check if the specified key is or is not
included in the dictionary, respectively.

Figure 3. The application of a dynamic programming approach for obtaining the 4th number in

the Fibonacci sequence. We use coloured rectangles for showing identical calls to the Fibonacci
algorithm with the same input. However, in this case, the result related to the transparent

rectangles is obtained from previous computations of the same call (linked via the transparent
dashed arrows). As a consequence of this reuse, the step 7 and 8 are not executed at all.

In addition, we need to create this dictionary somehow when executing the algorithm in a way
that can be reused also by the subsequent execution provided in the recursive step. Thus,
generally speaking, the algorithm itself should:

● initialises an empty dictionary as the very first step;
● reusing the dictionary previously initialised every time it is needed in any recursive

application of the algorithm itself.

In order to allow such reuse, the function implementing the algorithm should be able to take the
dictionary containing the solutions as input except for the first time it is called, where the
dictionary has to be initialized. In order to do that, we can use the extended version of the
parameter specification in the function definition, by making possible to specify non-mandatory
parameters that, if not specified in the execution, will be populated with a default value. This can
be specified by means of the following structure: def <function>(<param_1>,

<param_2>, ..., <param_d_1>=<default_1>, <param_d_2>=<default_2>,

...) , where the mandatory parameters (i.e. <param_n>) are specified first, and are followed
by the non-mandatory parameters (<param_d_n>). It is worth mentioning that, when calling

such function, if one specifies a particular value for a non-mandatory parameter, then such
value will rewrite the default value and will be used instead of it.

Test case for the algorithm

def test_fib_dp(n, expected):

 result = fib_dp(n)

 if expected == result:

 return True

 else:

 return False

Code of the algorithm

def fib_dp(n, d=dict()):

 # Checking if a solution exists

 if n not in d:

 if n == 0 or n == 1: # base case

 d[n] = n

 else: # recursive step

 # the dictionary will be passed as input of the recursive

 # calls of the algorithm

 d[n] = fib_dp(n-1, d) + fib_dp(n-2, d)

 return d[n]

print(test_fib_dp(0, 0))

print(test_fib_dp(1, 1))

print(test_fib_dp(2, 1))

print(test_fib_dp(7, 13))

Listing 2. The implementation, in Python, of the dynamic programming algorithm for calculating
the Fibonacci number. The source code of this listing is available as part of the material of the

course.

Now we have all the ingredients for creating the dynamic programming algorithm for calculating
the Fibonacci number. The Python code is introduced in Listing 2, and it implements the
following steps:

1. [base case: solution exists] return the solution to the input number if it has been
processed in the past; otherwise

2. [base case: address directly] if the input number for which to find the Fibonacci
number is 0 or 1, then return such input number; otherwise

3. [divide] obtain the two input numbers according to the Fibonacci definition;

http://comp-think.github.io/2018-2019/python/fib_dp.py
http://comp-think.github.io/2018-2019/python/fib_dp.py

4. [conquer] run the same algorithm recursively for each of the numbers obtained in the
previous step;

5. [combine] sum the results of the partial solutions obtained by running the two
executions of the algorithm recursively;

6. [memorize] store the sum into a dictionary using the original input number as the key.

Thus, if we have to run the algorithm for calculating the Fibonacci number at the 4th month, we
need just to execute fib_dp(4) , without specifying the dictionary. In this way, the dictionary
will be initialized by means of the default value, i.e. by means of the dictionary constructor
dict() .

Exercises
1. Write an extension of the multiplication function introduced in the lecture "Recursion", i.e.

def multiplication(int_1, int_2, solution_dict) , by using a dynamic
programming approach. This new function takes in input two integer numbers to multiply
and a dictionary with solutions of multiplications between numbers, which can be used to
retrieve directly the result of such multiplication if already present in it. The function
returns the result of the multiplication and, at the same time, modifies the solution
dictionary adding additional solutions when found. Accompany the implementation of the
function with the appropriate test cases.

2. Write an algorithm for using the merge sort (introduced in the previous lecture) so as to
use a dynamic programming approach in case the same list of books must be ordered
twice or more times during the algorithm execution – see the informal example
introduced in Section "Remembering solutions to sub-problems" of this lecture notes.
Accompany the implementation of the function with the appropriate test cases.

Acknowledgements
I would like to thank a student of the course, Severin Josef Burg, for having suggested
corrections and improvements to the text of these lecture notes.

References
Fibonacci, L. (1202). Liber Abaci.
http://lhldigital.lindahall.org/cdm/compoundobject/collection/math/id/8734/rec/49 (last visited 28
November 2017)

https://comp-think.github.io/2018-2019/lecture-notes/08%20-%20Recursion.pdf
https://comp-think.github.io/2018-2019/lecture-notes/09%20-%20Divide%20and%20conquer%20algorithms.pdf
https://github.com/SeverinJB
http://lhldigital.lindahall.org/cdm/compoundobject/collection/math/id/8734/rec/49

