
Organising information: graphs
Author(s)
Silvio Peroni – silvio.peroni@unibo.it
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Edges and nodes; Euler; Graph; Königsberg

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
These lecture notes introduce the last data structure presented in this course, i.e. the graph.
The historic hero introduced in these notes is Leonhard Euler, a great scientist of the 18th
century who introduced for the very first time a new mathematical field called graph theory.

Historic hero: Euler
Leonhard Euler (shown in Figure 1) was one of the most important men of Science of the whole
history. His contributions in Mathematics, Physics, Astronomy, Logics, among the others, were
disruptive and even started pretty new disciplines that were not explored at all before his
contributions. He spent most of his life in Saint Petersburg in Russia. Among the mathematical
problems he dealt with, there is one related to a particular funny story that he solved by initiating
a new field in mathematics called graph theory.

The (mathematical) story told about the seven bridges of the city of Königsberg, illustrated in
Figure 2. The problem could be stated as follows: is it possible to walk around the city and to
cross each of the bridges once and only once? Several people have tried to propose a solution
to this enigma before Euler, but he was able to demonstrate it by means of a purely
mathematical (and non-debatable) proof [Euler, 1741].

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Figure 1. A portrait of Leonard Euler by Emanuel Handmann. Picture by Oursana, source:

https://en.wikipedia.org/wiki/File:Leonhard_Euler.jpg.

Figure 2. A representation of the seven bridges in Königsberg. Figure by Bogdan Giuşcă,

source: https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png.

https://en.wikipedia.org/wiki/File:Leonhard_Euler.jpg
https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png
https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png

In order to do that, he abstractly described the four lands in Königsberg divided by the river as
nodes of a network, where each edge between two nodes actually represents one of the bridges
of the city. The illustration about his abstract representation is introduced in Figure 3. By using
this abstract notion, known as graph, he was able to demonstrate that there is no solution to the
aforementioned problem of the seven bridges of Königsberg.

Figure 3. An abstract representation of the seven bridges in Königsberg by means of a graph.

The solution of the problem was entirely based on the following intuition. The idea was that each
node, excepting the starting node and the final node, should have an even number of edges.
This is a practical implication derived from the moves that one has to do to enter and then go
out from a node. In fact, an edge is followed every time one enters in a node, and another edge
is needed to go out from that node as well. Thus, at least, each non-starting and non-ending
node must have mandatorily an even number of edges for being satisfactorily traversed one or
more times. However, all the nodes in Figure 3 have an odd number of edges, which contradicts
the aforementioned requirement.

Graphs
Graphs are one of the main data structure in Computer Science and Computational Thinking.
They are used to describe in abstract terms several well-known situations like routes between
cities, connections to people you know in social networks, and the organisation of links between
Web pages [Albert and Barabasi, 2002]. Graphs are entirely derived from the mathematical
structure invented by Euler, as illustrated in Section "Historic hero: Euler". In particular, we can
distinguish two different kinds of graphs: undirected graphs (like the one used by Euler for
solving the seven bridge of Königsberg problem), where an edge can be traversed in one way
or the other indifferently, and directed graphs, where the edge has a clear specification of the
node-to-node direction that can be followed.

https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
http://mathinsight.org/definition/undirected_graph
http://mathinsight.org/definition/undirected_graph
http://mathinsight.org/definition/undirected_graph
http://mathinsight.org/definition/directed_graph
http://mathinsight.org/definition/directed_graph
http://mathinsight.org/definition/directed_graph

While in Python, as it happens for the trees, there is not a built-in class defining this type of
objects, there are several external libraries that implement them. Among the most used and
famous, there is NetworkX, which makes available the common constructs for creating and
traversing graphs, as well as additional functions for analysing them for different purposes, such
as for the analysis of social networks.

Undirected graphs
An undirected graph can be created by means of the constructor Graph() . When a new graph
is created, it will be used for creating all the nodes and all the edges.

from networkx import Graph

create a new graph

my_graph = Graph()

create four nodes

my_graph.add_node(1)

my_graph.add_node(2)

my_graph.add_node(3)

my_graph.add_node(4)

create five edges

my_graph.add_edge(1, 2)

my_graph.add_edge(1, 3)

my_graph.add_edge(1, 4)

my_graph.add_edge(2, 3)

my_graph.add_edge(3, 4)

Listing 1. A simple undirected graph with four nodes and five edges. The source code of this
listing is available as part of the material of the course.

It is worth mentioning that the NetworkX package allows us to associate as a node any possible
immutable object definable in Python, that can be, thus, connected by means of one or more
edges. In particular, it is possible to execute the following methods on a graph object:

● <graph>.add_node(<node>) adds <node> as a node of the graph – note that, if a
node with that value is already present, the method has no effect on the graph;

● <graph>.add_edge(<node_1>, <node_2>) adds and edge between <node_1>
and <node_2> – note that, since we are dealing with undirected graphs, inverting the
position of the input nodes does not change the result;

● <graph>.remove_node(<node>) removes <node> from the graph as well as all the
edges that involve it directly;

https://networkx.github.io/
https://networkx.github.io/
http://comp-think.github.io/2018-2019/python/graph_instructions.py

● <graph>.remove_edge(<node_1>, <node_2>) removes the particular edge
between the two nodes specified.

An example of a graph is depicted in Listing 1. It creates a structure similar to the one
introduced in Figure 3 except that it is not possible to create multiple arcs between two nodes.
Thus, using this specific constructor it is not possible to create the same structure requested by
Euler for solving the mathematical problem introduced in Section "Historic hero".

from networkx import MultiGraph

create a new graph

my_graph = MultiGraph()

create four nodes

my_graph.add_node(1)

my_graph.add_node(2)

my_graph.add_node(3)

my_graph.add_node(4)

create seven edges

my_graph.add_edge(1, 2)

my_graph.add_edge(1, 2)

my_graph.add_edge(1, 3)

my_graph.add_edge(1, 4)

my_graph.add_edge(1, 4)

my_graph.add_edge(2, 3)

my_graph.add_edge(3, 4)

Listing 2. Another undirected graph that maps precisely the situation depicted in Figure 3, since
it allows the creation of multiple arcs between the same two nodes. The source code of this

listing is available as part of the material of the course.

In order to enable the creation of multiple edges between two nodes, we have to use a different
kind of undirected graph by means of the constructor MultiGraph() . This particular graph
accepts multiple edges between nodes by calling several times the method
<graph>.add_edge(<node_1>, <node_2>) , and the method
<graph>.remove_node(<node>) will remove all the edges involving that input node, as
usual. An example of this kind of graphs, that maps precisely the one introduced in Figure 3, is
shown in Listing 2.

There are at least two additional methods that are fundamental in order to understand how a
graph is composed and which nodes are linked with the others. They are <graph>.nodes()
and <graph>.edges() that return particular kind of lists (called NodeView and EdgeView
respectively) that can be iterated by means of a foreach loop as usual. It is also possible to

http://comp-think.github.io/2018-2019/python/multigraph_instructions.py

understand what are the nodes to which a target node is linked with by means of the adjacency
variable <graph>.adj[<node>] . This operation returns an AtlasView , which is a kind of
dictionary containing all the nodes that can be reached starting from <node> , where each key
of the dictionary actually represent one of these nodes.

from networkx import Graph

create a new graph

my_graph = Graph() # it works also with MultiGraph

my_graph.add_node(1) # no additional data

my_graph.add_node(2, name="John", surname="Doe") # additional data

my_graph.add_node(3)

my_graph.nodes()

Returns NodeView (tuple) with all the nodes:

NodeView((1, 2, 3))

my_graph.nodes(data=True)

Returns a NodeDataView (like a dictionary) with nodes + data:

NodeDataView({1: {}, 2: {'name': 'John', 'surname': 'Doe'}, 3: {}})

my_graph.add_edge(1, 2) # no additional data

my_graph.add_edge(1, 3, weight=4) # additional data

my_graph.edges()

Returns an EdgeView (of two-item tuples) with all the edges:

EdgeView([(1, 2), (1, 3)])

my_graph.edges(data=True)

Returns an EdgeDataView (of three-item tuples) with edges + data:

EdgeDataView([(1, 2, {}), (1, 3, {'weight': 4})])

my_graph.adj[1]

This returns an AtlasView (like a dictionary) containing all the

nodes that are reachable from an input one + data of edges:

AtlasView({2: {}, 3: {'weight': 4}})

Listing 3. The use of additional data for enriching nodes and edges of graphs. The source code
of this listing is available as part of the material of the course.

The value associated with each node, in this case, is actually another dictionary which is
initialised empty if one did not specify any additional information explicitly. This information, or
attribute as it is called in NetworkX, can be specified when one build the edge connecting the

http://comp-think.github.io/2018-2019/python/graph_attribute_instructions.py

two nodes by using one or more pairs of a parameter and the value assigned to him via = , as
shown in Listing 3. The same kind of assignments can be done also to nodes. In addition, these
information can be also shown by executing the aforementioned methods nodes() and
edges() by specifying the named parameter data as True, i.e.
<graph>.nodes(data=True) and <graph>.edges(data=True) . This use of naming
explicitly the parameters in Python when one wants to execute a method (or a function) is totally
admissible by Python, as explained in its documentation.

Directed graphs
According to the NetworkX package, a directed graph can be created with the constructor
DiGraph() . It shares exactly the same methods presented for the undirected graphs in
Section "Undirected graphs". However, in this case, the order between <node_1> and
<node_2> in the methods for adding and removing an edge is meaningful, since an edge
specifies now a particular direction: <node_1> is the source node, while <node_2> is the
target node.

In addition, it is possible to specify more than one edge between two nodes by using the
constructor MultiDiGraph() . For instance, Figure 4 shows what is the abstract diagram of
the graph implemented in Listing 2 if the constructor MultiDiGraph() would be used instead
of MultiGraph() .

Figure 4. The diagram of the graph depicted in Figure 3 and implemented in Listing 2 if a

MultiDiGraph() is used instead of a MultiGraph() .

Exercises
1. Consider the list of co-authors of Tim Berners-Lee as illustrated in the write box at

http://dblp.uni-trier.de/pers/hd/b/Berners=Lee:Tim. Build an undirected graph that

https://docs.python.org/3/glossary.html#term-argument
https://docs.python.org/3/glossary.html#term-argument
http://dblp.uni-trier.de/pers/hd/b/Berners=Lee:Tim
http://dblp.uni-trier.de/pers/hd/b/Berners=Lee:Tim

contains Tim Berners Lee as the central node and that is linked to other five nodes
representing his top-five co-authors. In addition, specify the weight of each edge as an
attribute, where the value of the weight is the number of bibliographic resources (articles,
proceedings, etc.) Tim Berners-Lee has co-authored with the person linked by that edge.

2. Create a directed graph which relates the actors Brad Pitt, Eva Green, George Clooney,
Catherine Zeta-Jones, Johnny Depp, and Helena Bonham Carter to the following
movies: Ocean's Twelve, Fight Club, Dark Shadows.

Acknowledgements
I would like to thank some students of the course, Chantal Lengua and Carlo Teo Pedretti, for
having suggested corrections and improvements to the text of these lecture notes.

References
Albert, R., Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of
Modern Physics, 74 (47): 47-97. DOI: https://doi.org/10.1103/RevModPhys.74.47, freely
available at https://arxiv.org/pdf/cond-mat/0106096.pdf

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii academiae
scientiarum Petropolitanae, 8 (1741): 128-140.
http://eulerarchive.maa.org//docs/originals/E053.pdf (last visited 10 December 2017)

http://www.imdb.com/name/nm0000093/
http://www.imdb.com/name/nm0000093/
http://www.imdb.com/name/nm1200692/
http://www.imdb.com/name/nm1200692/
http://www.imdb.com/name/nm0000123/
http://www.imdb.com/name/nm0000123/
http://www.imdb.com/name/nm0001876/
http://www.imdb.com/name/nm0001876/
http://www.imdb.com/name/nm0000136/
http://www.imdb.com/name/nm0000136/
http://www.imdb.com/name/nm0000307/
http://www.imdb.com/name/nm0000307/
http://www.imdb.com/title/tt0349903/
http://www.imdb.com/title/tt0349903/
http://www.imdb.com/title/tt0137523/
http://www.imdb.com/title/tt0137523/
http://www.imdb.com/title/tt1077368/
http://www.imdb.com/title/tt1077368/
https://twitter.com/ChantalLengua
https://github.com/friendlynihilist
https://doi.org/10.1103/RevModPhys.74.47
https://arxiv.org/pdf/cond-mat/0106096.pdf
http://eulerarchive.maa.org//docs/originals/E053.pdf

