
Greedy algorithms
Author(s)
Silvio Peroni​ – ​silvio.peroni@unibo.it
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Evelyn Berezin; Line wrap; Word processor

Copyright notice
This work is licensed under a ​Creative Commons Attribution 4.0 International License​. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
These lecture notes introduce the last kind of algorithms presented in this course, i.e. the
greedy algorithms​. The historic hero introduced in these notes is Evelyn Berezin, one of the
most important business women of the past century, who have created the first word processor.

Historic hero: Evelyn Berezin
Evelyn Berezin (depicted in ​Figure 1​) was a physicist who started to work in a company that
produced digital computers, and where she started to work on particular the development of the
logic designs of computers – e.g. ​[Auerbach et al., 1962]​. After a bunch of years passed in
changing job, and several contributions related to the development of large computer systems
such as the computerised reservation system for United Airlines, in 1969, she founded her own
company: Redactron Corporation.

In this new company, she started to work on computer systems to simplify the work of
secretaries. The main product of the company was called ​Data Secretary​, the very first ​word
processor in history, which was a stand-alone device developed for addressing that specific
task, so as to replace the more common typewriter. It has been the precursor of all the series of
word processors that have been developed since that date, initially as stand alone devices, and
then as independent software applications to be installed in personal computers – starting from
Electric Pencil (1976) and ​WordStar (1978)​, to ​Microsoft Word (1983) and ​OpenOffice Writer
(1999)​.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Evelyn_Berezin
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Electric_Pencil
https://en.wikipedia.org/wiki/WordStar
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/OpenOffice.org
https://en.wikipedia.org/wiki/OpenOffice.org

Figure 1.​ A picture of Evelyn Berezin taken in 2015. Picture from the ​Computer History
Museum​, source:

https://images.computerhistory.org/blog-media/2015-fellow-awards-evelyn-berezin.jpg​.

Greedy algorithms
A ​greedy algorithm is an approach that, at every stage of execution of a particular algorithm
where we are seeking for possible candidates for constructing the solution to a computational
problem, makes always the choice that is optimal (i.e. the best one) in that particular moment.
For certain kinds of problems, this behaviour allows us to reach the best possible solution to the
computational problem in consideration. For instance, if you have to determine the minimum
number of euro coins needed for making a change, then a greedy algorithm will return an
optimal solution overall:

1. consider the coins to choose for the change as ordered in a decrescent way, from the
highest value (i.e. 2 euros) to the lowest one (i.e. 1 cent);

2. for each kind of value, add in the candidate set of the solution as much coins of that
value as possible until their sum is lesser than the remaining of the change to give;

3. if the change value is reached, return it.

However, sometimes it is possible that the solution found, while it provides a correct solution to
the problem, is just a suboptimal solution. For instance, driving from Florence to Bologna, we

https://www.computerhistory.org/
https://www.computerhistory.org/
https://images.computerhistory.org/blog-media/2015-fellow-awards-evelyn-berezin.jpg
https://en.wikipedia.org/wiki/Greedy_algorithm

can encounter a crossroad with two signs indicating two different routes to get to Bologna. The
left route allows us to get to Bologna by travelling for 42 kilometres. On the other hand, the right
route allows us to get to Bologna by travelling for 56 kilometres. A pure greedy approach would
select the left route since at the moment seems the most convenient scenario. However, the
approach does not predict the existence of possible traffic in the left road and, consequently, it
would be possible to arrive in Bologna even after a car that takes the right route.

There are two main characteristics that a computational problem should show so as to be sure
that the application of a greedy approach will bring to an optimal solution to the problem. The
first one is that the ​greedy choice property should be guaranteed. This property means that, at a
certain step, we can choose the best candidate for improving the set of candidates bringing to a
solution.

The other characteristic is the problem as an ​optimal substructure​. This means that the optimal
solution to a computational problem can be built by considering the optimal solutions to its
subproblems. For instance, the previous example of the travel from Florence to Bologna does
not have an optimal substructure because there can be accidents that are encountered as a
consequence of a previously-chosen optimal subsolution.

Line wrap
Understanding where to break a line in a page, i.e. ​line wrap​, is one of the simplest and most
relevant problems one has to tackle when dealing with documents, either in print or digital
forms. For instance, when a person is using a typewriter for writing a document, at a certain
point, after she has written a bunch of characters, there is a mandatory action to perform which
is the carriage and return operation, that is performed mechanically on the typewriter itself.
Basically speaking, when the writer notices that the page has no more space for imprinting a
new word on that line, the configuration of the typewriter is initialised again in order to start from
the very beginning of the left border but in the following line.

Figure 2. ​A screenshot depicting how​ ​OpenOffice Writer​ deals with line wrap.

https://en.wikipedia.org/wiki/Optimal_substructure
https://en.wikipedia.org/wiki/Line_wrap_and_word_wrap
https://en.wikipedia.org/wiki/Line_wrap_and_word_wrap
https://www.openoffice.org/
https://www.openoffice.org/

Test case for the algorithm

def test_line_wrap(text, line_width, expected):

result = line_wrap(text, line_width)

if expected == result:

 return True

Else:

 return False

Code of the algorithm

def line_wrap(text, line_width):

the list of all the lines of a document

result = []

the maximum available space per a specific line

space_left = line_width

the current line that is built

line = []

for word in text.split(" "):

 word_len = len(word)

 # we consider the length of the word plus one space character

 if word_len + 1 > space_left:

 result.append(" ".join(line))

 line = [word]

 space_left = line_width - word_len

 else:

 line.append(word)

 space_left = space_left - word_len + 1

we add the remaining line to the document

result.append(" ".join(line))

return "\n".join(result)

print(test_line_wrap("Just a word.", 15, "Just a word."))

print(test_line_wrap("Just a word.", 1, "\nJust\na\nword."))

print(test_line_wrap("This is a simple example.", 10,

 "This is a\nsimple\nexample."))

Listing 1. ​The implementation of the algorithm for calculating the line-wrap problem in Python.
The source code of this listing is available ​as part of the material of the course​.

http://comp-think.github.io/2018-2019/python/line_wrap.py

In modern tools, such as word processors (shown in ​Figure 2​), the line wrap is totally handled
by an algorithm that takes care of choosing when there is enough space to put that word in the
current line. Generally speaking, we can describe the problem in the following manner:

Computational problem: break a text into lines such that it will fit in the available width of a
page.

A greedy approach is very efficient and effective for addressing the aforementioned
computational problem. It will proceed as follows:

1. For each word in the input text, see if there is enough space in the line for adding that
word;

2. If there is space, add the word to the line; otherwise,
3. Declare finished the current line, and add the word as the first token of the following line.

In order to implement this algorithm, we need to introduce two ancillary methods for strings, in
particular for tokenizing and recomposing strings. The first of these methods is
<string>.split(<string_separator> ​). This method allows us to separate the string
according to a specific set of characters the string may contain, specified by the parameter
<string_separator> ​. For instance, if we have the variable ​my_string assigned to ​"a b

c" ​, the execution of the aforementioned method, i.e. ​my_string.split(" ") ​, returns the
following list: ​["a", "b", "c"] ​.

The other method we need, i.e. ​​<string_separator>.join(<list_of_strings>) ​,
implements the opposite operation, i.e. it is able to concatenate the strings in a list again,
according to a particular sequence of characters. For instance, if we have the list ​my_list =

["a", "b", "c"] ​, the execution of the aforementioned method, i.e. ​​" ".join(my_list) ​,
returns the following string: ​"a b c" ​.

We now have all the ingredients for implementing our algorithm for the line-wrap. In particular, it
is introduced in ​Listing 1​.

Exercises
1. Implement the informal algorithm introduced in ​Section "Greedy algorithms" for returning

the minimum amount of coins for a change.

Acknowledgements
I would like to thank some of the students of the course, ​Tanise Pagnan Ceron and ​Eleonora
Peruch​, for having suggested corrections and improvements to the text of these lecture notes.

https://github.com/Tanise
https://github.com/EleonoraPeruch
https://github.com/EleonoraPeruch

References
Auerbach, A. A., Evelyn, B., Samuel, L., Shaw, R. F. (1962). Electronic data file processor. U.S.
Patent No. 3,017,610. Washington, DC: U.S. Patent and Trademark Office.
https://patentimages.storage.googleapis.com/e5/ca/5b/9b2d6591f0cb14/US3017610.pdf (last
visited 18 December 2018)

https://patentimages.storage.googleapis.com/e5/ca/5b/9b2d6591f0cb14/US3017610.pdf

