
Exercises on algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it
Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Algorithms; Exercises; Python

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
These lecture notes introduce additional exercises about algorithms that can be solved by using
Python.

Introduction
In this lecture, we introduce several exercises. Each exercise asks one to develop a particular
algorithm, that can be written in Python. As a suggestion, first, try to solve the algorithm without
any additional help. In case of issues or difficulties, try to google for possible approaches to
solve it, and recreate a particular solution for answering the exercise.

Of course, feel free to test any algorithm in Python to be sure it is working as expected – i.e. use
the test-driven development approach for checking this aspect, as demanded during the course.
Finally, share your solution on the GitHub repository of the course, creating a new issue, or
answer directly to an existing issue if some of your colleagues have already created it for the
exercise in consideration.

Checking numbers
Write the function def is_odd(int_number) in Python that takes an integer number as
input and returns True if the number is odd, False otherwise.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/comp-think/2018-2019/
https://github.com/comp-think/2018-2019/issues

Floor division
Write the function def floor_division(dividend, divisor) that takes the dividend
and the divisor as input and returns the division between the two and returns only the integer
part of the division, without considering the fractional part. For instance, will return 2, as well 2

5
as .3

6

Note that it is not possible to use the Python built-in operator // in the algorithm
implementation.

Finding the maximum
Write the function def find_max(number_collection) that takes a collection (a list, a
set, etc.) of numbers as input and returns the greatest number it contains.

Finding the minimum
Write the function def find_min(number_collection) that takes a collection (a list, a
set, etc.) of numbers as input and returns the lowest number it contains.

Prime factorization
Write the function def prime_factorization(int_number) that takes an integer number
as input and returns its prime factorization, i.e. a dictionary specifying as keys the prime factor
numbers of the input integer and as keys how many times that prime number is actually used in
the factorization. For instance, the prime factorization of the number 60 is 5 • 3 • 2 • 2, thus
resulting in the following dictionary: {5: 1, 3: 1, 2: 2} .

Palindromos
Write the function def is_palindromic(word) that takes a word as input and returns True
if it is a palindrome, False otherwise. For instance, “anna” and “madam” are both palindromic
words.

Common substring
Write the function def longest_common_substring(s1, s2) that takes two strings as
input and returns a new string which is the longest common substring contained in both the

https://en.wikipedia.org/wiki/Prime_factor
https://en.wikipedia.org/wiki/Prime_factor
https://en.wikipedia.org/wiki/Palindrome
https://en.wikipedia.org/wiki/Palindrome

input strings. For instance, specifying the strings "this is new, guys!" and "it is

new, fellows!" as input, the algorithm should return the string " is new, " . If no
common substring exists, the empty string "" is returned.

String distance
Write the function def levenshtein_distance(s1, s2) that takes two strings as input
and returns the minimum number of edit operations on characters that are needed to transform
the first string into the second one. For instance, considering the strings "house" and "home" ,
the function should return 2: substitute the character u with the character m (first operation:
"house" -> "homse"), and remove the character s (second operation: "homse" ->

"home").

Another distance metric for strings
The Hamming distance between two strings of equal length is the number of positions at which
the corresponding characters are different. Thus, it measures the minimum number of
substitutions required to change one string into the other.

Write the function def hamming_distance(s1, s2) which takes two strings as input and
that calculates the Hamming distance if the strings have the same length, otherwise it returns
the smallest string.

List items as keys in a dictionary
Write the function def algorithm(dictionary, key_list) that takes a dictionary and a
list of strings as input and checks if each string in the list is a key of a pair in the dictionary. All
the values of the pairs in the dictionary that have been matched by any key contained in the
input list are added to a set, that is returned at the end of the algorithm.

Binary search
Write the function def binary_search(item, ordered_list, start, end) , that
takes an item to search (i.e. item), an ordered list and a starting and ending positions in the list
as input, and returns the position of item in the list if it is included in it, and None otherwise. The
approach implemented by the binary search is described as follows. First, it checks if the middle
element of the list between start and end (included) is equal to item , and returns its position
in this case. Otherwise:

1. if the middle element is lesser than item , the search is executed in the part of the list
that follows the middle element; otherwise,

2. if the middle element is greater than item the search is executed in the part of the list
that precedes the middle element.

Fibonacci search
Write the function def fibonacci_search(item, ordered_list, start, end) that
takes an item, an ordered list, a starting position and an ending position as input and returns the
position the item in the list if it is included between the start and end position specified. It is a
particular adaptation of the binary search, where the list is actually divided into two parts that
have sizes that are consecutive Fibonacci numbers – thus, the difficult part is to calculate the
middle position, while the search process will follow the same rules of the binary search. Note
that the length n of the list on which to find the item should be a Fibonacci number, i.e. n =
fib(m). If n is not a Fibonacci number, then let fib(m) be the smallest number in the Fibonacci
sequence that is greater than n. That m is used for determining how to recursively call the
algorithm of the two parts of the list.

For instance, if we have to find a book in a list of 19 book titles, m will be set to 8 (since fib(8) =
21 > 19), and an ancillary index mid (identifying the position of the middle element) is obtained
by using the Fibonacci number at m - 2.

Breadth-first search
Write the function def breadth_first_search(item, input_tree) that takes an item
to search (e.g. a name) and a node in a tree where each node contains a value, returns the
node where the item is stored. The search on the tree starts from the root. At a given node, the
algorithm checks if any of its children refers to the item we are looking for. In this case, the
algorithm returns the child containing the item, otherwise, it repeats the same operation for all its
child nodes, from the left-most to the right-most. The order in which the nodes are visited is
shown in Figure 1.

Figure 1. How the nodes are visited according to a breadth-first search. Picture by Alexander

Drichel, source: https://commons.wikimedia.org/wiki/File:Breadth-first-tree.svg.

https://commons.wikimedia.org/wiki/File:Breadth-first-tree.svg

Depth-first search
Write the function def depth_first_search(item, node) that takes an item to search
(e.g. a name) and a node in a tree where each node contains a value, and returns the node
where the item is stored. The search on the tree starts from the root. At a given node, the
algorithm checks if any of its children that has not been visited yet (from the left-most to the
right-most) refers to the item we are looking for. In this case, the algorithm returns the child
containing the item, otherwise, it repeats the same operation for the next non-visited child. The
order in which the nodes are visited is shown in Figure 2.

Figure 2. How the nodes are visited according to a depth-first search. Picture by Alexander

Drichel, source: https://commons.wikimedia.org/wiki/File:Depth-first-tree.svg.

Bubble sort
Write the function def bubble_sort(input_list) that takes an unordered list as input
and returns it ordered. The idea behind the bubble sort is the following one: at every step of the
algorithm, it compares a pair of adjacent items. If they are in the right order, analyses the next
pair directly, otherwise it swaps them before analysing the following pair. The algorithm stops
after having compared all the possible pairs in the list twice, so as to be sure that all of them
have been put in the right position.

Efficiency with bubble sort
Write the function def bubble_sort_efficient(input_list) , which is similar to the
previous one, but it actually stops if no swaps are possible at a certain iteration.

https://commons.wikimedia.org/wiki/File:Depth-first-tree.svg

Selection sort
Write the function def selection_sort(input_list) that takes an unordered list as
input and returns it ordered. The selection sort works in the following way: it splits the list into
two sublists, i.e. that one having the items already sorted (on the left, initially empty) and the
one with the items in the wrong position (on the right). Every iteration, it looks for the smallest
item in the part of the unsorted sublist and swaps it with the left-most unsorted element.

Readability of English texts
The automated readability index (ARI) is a readability test for English texts, designed to gauge
the understandability of a text by representing the US grade level needed to comprehend such
text. The formula for calculating the ARI is the following one:

.71 .5 1.434 * chars
words + 0 * words

sentences − 2

where chars is the number of letters and numbers, words is the number of token, and sentences
is the number of sentences. Non-integer scores are always rounded up to the nearest whole
number, so a score of 10.1 or 10.6 would be converted to 11.

Write the function def ari(text) which takes a string representing a text in input and returns
the ARI for that text. As a simplification, the input text can be composed only by English
characters, numbers, commas, semicolons, colons, and full stops, and no abbreviation (such as
“e.g.”) can be used.

Importance of words in a document
In information retrieval, the term frequency–inverse document frequency (or tf-idf) is a numerical
statistic that is intended to reflect how important a word is to a document in a corpus. It is based
on two functions:

● the term frequency, def tf(t, d) , which counts the number of times a term t occurs
in document d ;

● the inverse document frequency, idf(t, d_list) , which measures whether a term t
is common or rare across all the documents in the list d_list , calculated as the
logarithm of the division between the total number of documents in the list and the
number of documents that contains the term t .

Thus, the tf-idf of a term t in a document d included in a collection of document d_list is
simply the multiplication between its term frequency and its inverse document frequency.

Write the function def tfidf(t, d, d_list) which takes a string t representing a term, a
string d representing a document, and a list of strings d_list representing a collection of
documents which includes also d , and that returns the tf-idf of the input term according to the
document in that document list. As a simplification, all the input strings are composed only by
lowercase English alphabetic characters with no punctuation. The logarithm function log is
available in Python within the module math (from math import log) and takes the number
on which to calculate the logarithm as input.

Selecting activities
Write the function def activity_selector(input_dict) that takes a dictionary of
activities – i.e. { "activity1": { "start": "2017-12-25T09:34:55", "end":

"2017-12-26T16:14:01" }, ... } – as input and returns the list of the maximum
number of activities that can be performed by someone assuming that it cannot work on more
than one activity at a particular time.

Selecting activities: reprise
Write the function def weighted_activity_selector(input_dict) that takes a
dictionary of activities – i.e. { "activity1": { "start": "2017-12-25T09:34:55",

"end": "2017-12-26T16:14:01", "weight": 7 }, ... } – as input and returns the
list of the number of activities that can be performed by someone assuming that it cannot work
on more than one activity at a particular time. In addition, the sum of all the weights of the
selected activities must be maximum (i.e. is the highest possible).

Tower of Hanoi
Write the function def solve_hanoi(stack1, stack2, stack3) that takes three stacks
as input depicting the Tower of Hanoi puzzle, shown in Figure 3, and that returns the solution to
the puzzle.

The goal of this solitaire is to recreate the same tower initially put the first rod in the third one, by
following three simple rules:

● at every iteration, only one disk can be moved;
● a move allows one to take a disk from a stack and place it in another one;
● no disk may be placed on top of a smaller disk.

Figure 3. A picture of the initial status of the Tower of Hanoi puzzle. Picture by Ævar Arnfjörð

Bjarmason, source: https://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg.

Sudoku
Write the function def solve_sudoku(dict_of_cells, last_move=None) that takes
as input a dictionary of cells – e.g. {(0, 0): None, (1, 0): 5, ...} , each defining a
particular cell in a sudoku 9x9 board – and the last move done, and returns the solution to the
puzzle. It is worth mentioning that each key in the dictionary identifies a particular cell in terms
of x-y positions defined as tuples (from (0, 0) to (8, 8)), and the value associated with
each key is either a number (from 1 to 9) or None if no number is specified. A possible initial
state of the sudoku board is introduced in Figure 4.

Figure 4. A possible initial state of a sudoku puzzle. Picture by Auguel, source:

https://commons.wikimedia.org/wiki/File:Sudoku_Puzzle_by_L2G-20050714_standardized_layo
ut.svg.

The rules of the game are pretty simple: each number can only occur once in each row, column,
and 3x3 box indicated in Figure 4 by means of bolder borders.

https://commons.wikimedia.org/wiki/File:Tower_of_Hanoi.jpeg
https://commons.wikimedia.org/wiki/File:Sudoku_Puzzle_by_L2G-20050714_standardized_layout.svg
https://commons.wikimedia.org/wiki/File:Sudoku_Puzzle_by_L2G-20050714_standardized_layout.svg

Knight’s tour
Write the function def solve_knights_tour(dict_of_cells, last_move=None) that
takes as input a dictionary of cells – e.g. {(0, 0): False, (1, 0): False, ...} , each
defining a particular cell in a chess 5x5 board – and the last move done, and returns the solution
to the puzzle. It is worth mentioning that each key in the dictionary identifies a particular cell in
terms of x-y positions defined as tuples (from (0, 0) to (4, 4)), and the value associated
with each key is either True if the cell has been previously occupied by the knight or False
otherwise. In particular, starting from the centre cell of the 5x5 board (i.e. (2, 2) , initially set to
True), the algorithm should find the moves that allow the knight to visit every cell only once. It is
worth mentioning that the knight moves to a cell that is two cell away horizontally and one cell
vertically, or two cells vertically and one cell horizontally.

Shortest path
Write the function def shortest_path(input_graph, start_node, end_node) , that
takes a undirected and weighted graph (i.e. each edge has a cost for being traversed), a start
node (e.g. a city), and an end node (e.g. another city) in input, and returns the optimal list of
edges (e.g. the roads that one should take) that must traversed for reaching the end node from
the start one with the minimal sum of the weights.

