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Abstract 
This chapter introduces the main concepts related to computational thinking by providing a             
summary of relevant topics in the areas of Linguistics and Computing in the past 200 years. The                 
historic hero introduced in these notes is Noam Chomsky, considered one of the fathers of               
modern linguistics. His works have been an enormous impact on the Linguistics domain as well               
as in the Theoretical Computer Science domain. 

Historic hero: Noam Chomsky 
Noam Chomsky (shown in Figure 1) is one of the most prominent scholars of the last one                 
hundred years. His contributions and research works have been disruptive and have changed             
the way scholars have approached several domains in science and humanities. He is described              
as one of the fathers of modern linguistics with Ferdinand de Saussure, Lucien Tesnière, Luis               
Hjelmslev, Zellig Harris, Charles Fillmore. He is one of the very first contributors and founders of                
the cognitive science field . 1

 
His approach to linguistics has been revolutionary, even if linguists have also debated it. The               
central aspect of his approach to human language is that mathematics can be used to represent                
the syntactic structure of a human language. Also, such a structure is biologically determined in               

1 Cognitive science is concerned with the study of mind and its processes according to several 
interdisciplinary perspectives, including linguistics, psychology, and artificial intelligence. 

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Universal_grammar


 

all humans. It is already within us since our birth, and it is a unique characteristic of human                  
beings only, and not of other animals. His view of human language is in high contrast with                 
previous ideas about the evolution of languages, which intended a human being with no              
preconfigured linguistic structure. Thus, the language should have been a matter of learning a              
radically new endeavour from scratch. 
 

 
Figure 1. A picture of Chomsky taken in 2011. Picture by Andrew Rusk, source: 

https://en.wikipedia.org/wiki/Noam_Chomsky#/media/File:Noam_Chomsky_Toronto_2011.jpg. 
 
Among his extensive series of works in linguistics, the classification of formal grammars into a               
hierarchy of increasing expressiveness is undoubtedly one of his most important contributions,            
especially in the field of the Theoretical Computer Science and Programming Languages. A             
formal grammar is a mathematical tool for defining a language, such as English. This tool               
permits the creation of a finite set of production rules that enable the construction of any valid                 
syntactic sentence. 
 
Each formal grammar is composed of a set of production rules in the form left-side ::=                

right-side (according to the Backus–Naur form, or BNF), where each side can contain one              
or more symbols of one or more of the following types: 
 

● terminal (specified between quotes in BNF), which identifies all the elementary symbols            
of the language in consideration (such as the nouns, verbs, etc., in English); 
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● non-terminal (specified between angular brackets in BNF), which identifies all the           
symbols in the formal grammar that can be replaced by a combination of terminal and               
non-terminal symbols. 

 
Applying a production rule means that the sequence of symbols in the right-side part of the                
rule replaces those specified in the left-side part. The rewrite process done by the              
application of such production rules starts from an initial non-terminal symbol. In particular, one              
applies the production rules until he/she gets a sequence of terminal symbols only. For              
instance, the production rules <sentence> ::= <pronoun> "write" , <pronoun> ::=          

"I" and <pronoun> ::= "you" allows one to create all the two-word sentences having              
either the first or the second person singular pronoun accompanied by the verb write (e.g. “I                
write”). In addition, each formal grammar must specify a start symbol, that must be non-terminal. 
 
The hierarchy proposed by Chomsky provides a way for describing formally the relations that              
may exist between different grammars in terms of the possible syntactic structures that such              
grammars are able to generate. In practice, they are characterised by which kinds of symbols               
one can use in the left-side and right-side parts of production rules. These grammars              
are listed as follows, from the less expressive to the most expressive – we use letters from the                  
Greek alphabet for indicating any possible combination of terminal and non-terminal symbols,            
including the empty symbols (usually represented by ε ): 
 

● regular grammars – form of production rules: <non-terminal> ::= "terminal"          
and <non-terminal> ::= "terminal" <non-terminal> . Example: 
<sentence> ::= "I" <verb> 

<sentence> ::= "you" <verb> 

<verb> ::= "write" 

<verb> ::= "read" 

● context-free grammars – form of production rules: <non-terminal> ::= γ . Example: 
<sentence> ::= <nounphrase> <verbphrase> 

<nounphrase> ::= <pronoun> 

<nounphrase> ::= <noun> 

<pronoun> ::= "I" 

<pronoun> ::= "you" 

<noun> ::= "book" 

<noun> ::= "letter" 

<verbphrase> ::= <verb> 

<verbphrase> ::= <verb> "a" <noun> 

<verb> ::= "write" 

<verb> ::= "read" 

● context-sensitive grammars – form of production rules: α <non-terminal> β ::= α            

γ β . Example: 
<sentence> ::= <noun> <verbphrase> 

<sentence> ::= <subject pronoun> <verbphrase> 



"I" <verb> <object pronoun> ::= "I" "love" <object pronoun> 

"I" <verb> <noun> ::= "I" "read" "a" <noun> 

<verbphrase> ::= <verb> <noun> 

<verbphrase> ::= <verb> <object pronoun> 

<subject pronoun> ::= "I" 

<subject pronoun> ::= "you" 

<object pronoun> ::= "me" 

<object pronoun> ::= "you" 

<noun> ::= "book" 

<noun> ::= "letter" 

● recursively enumerable grammars – form of production rules: α ::= β (no restriction             
applied). Example: 
<sentence> ::= <subject pronoun> <verbphrase> 

"I" <verb> <object pronoun> ::= "I" <verb> "you" 

"I" <verb> <noun> ::= "I" "read" "a" "book" 

<verbphrase> ::= <verb> <noun> 

<verbphrase> ::= <verb> <object pronoun> 

<subject pronoun> ::= "I" 

<subject pronoun> ::= "you" 

<object pronoun> ::= "me" 

<object pronoun> ::= "you" 

<verb> ::= "love" 

<verb> ::= "hate" 

What is a computer? 
The English Oxford Living Dictionary defines the term computer as an “electronic device which              
is capable of receiving information (data) in a particular form and of performing a sequence of                
operations [...] to produce a result”. However, the original definition of the same term, in use                
from the 17th century, is slightly different. It refers to someone “who computes” or to a “person                 
performing mathematical calculations” – from Wikipedia. In this chapter, when we use the term              
“computer”, we always consider the most generic definition: any information-processing agent           
(i.e. a machine or a person acting mechanically if appropriately instructed) [Nardelli, 2019]             
that can make calculations and produce some output starting from input information. 
 
Human computers, i.e. groups of people who have to undertake long calculations for specific              
experiments or measurements, have been used several times in the past. For instance, in              
Astronomy, human computers have been used for calculating astronomical coordinates of           
non-terrestrial things – such as the calculation of passages of Halley's Comet by Alexis Claude               
Clairaut and colleagues. Napoleon Bonaparte used human computers, as well. He imposed the             
creation of mathematical tables to convert from the old imperial system of measurements to the               
new metric system [Campbell-Kelly, 2009] [Roegel, 2010]. 
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Figure 2. Babbage Difference Engine No. 2 built at the Science Museum (London) and 

displayed at the Computer History Museum in Mountain View (California). Picture by Allan J. 
Cronin, source: https://commons.wikimedia.org/wiki/File:Difference_engine.JPG. 

 
In 1822, Charles Babbage, understanding the complexity of doing all these calculations by hand              
without introducing any error, started the development of an incredible machine. This machine             
was called the Difference Engine, a mechanical calculator, shown in Figure 2. It aimed at               
addressing similar tasks that were run by human computers, but in a way that was automatic,                
faster, and error-free. Babbage was able to build just a partial prototype of this machine, and,                
after the first enthusiasm, he was struggled by the limited flexibility that it offered. The Difference                
Engine was not a programmable machine. It was able to compute only a fixed set of operations                 
on the inputs specified physically by changing specific configurations of the machine. 
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In order to address these limitations, in 1837, Babbage started to devise a new machine, the                
Analytical Engine, summarised in Figure 3. No prototypes of this machine were built by              
Babbage. However, by using it, a user could create any possible procedural calculation, making              
it the very first mechanical general-purpose computer in history. In contrast to its predecessor,              
the Analytical Engine was able to receive the input instructions and data using punched cards.               
The use of such cards avoided the users to make any physical manipulation of the machine to                 
get it working. 
 

 
Figure 3. A sketch by Babbage that describes the architecture of the Analytical Engine. Source: 

The Analytical Engine: 28 Plans and Counting, Computer History Museum. 
 
The ideas presented in the Analytical Engine were developed in a physical machine only one               
century later. The computing technology has had a drastic change as a consequence of World               
War II. Military research ordered the construction of several calculators. For instance, the             
Bombe (1940), designed by Alan Turing and based on previous works by Marian Rejewski and               
associates [Inman, 2020], was the main instrument used by a group of people living in the                
secret British military camp at Bletchley Park to decipher German's communications encrypted            
through the Enigma machine. 
 
The Bombe was a handy and efficient machine. However, it was still partially based on               
mechanical components, and it allowed their users only a specific task. Nonetheless, it was              
crucial from a purely historical point of view. The first fully-digital computer, as envisioned by               
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Babbage with his Analytical Engine, was developed in the United States only a few years later,                
in 1946. It was the Electronic Numerical Integrator and Computer (ENIAC), shown in Figure 4,               
that was programmable through patch cables and switches. This invention represents one of the              
most important milestones of the history of computers - the fixed point in time that generated all                 
modern computers. 
 

 
Figure 4. A picture of the ENIAC in the Ballistic Research Laboratory (Maryland). Source: 

https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg. 

Natural languages vs programming languages 
There is an aspect of computers (either humans or machines) that has not directly been tackled                
yet: which mechanism can we use for asking them to address a particular task? relates to the                 
particular communication channel we want to adopt. Considering human computers, we can use             
the natural language (e.g. English) to instruct them in addressing specific actions. 
 
A natural language is just an ordinary language (e.g. English), either written or oral, that has                
evolved naturally in humans, usually without specific and premeditated planning. As we know             
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them, natural languages have the advantage (and, on the other hand, disadvantage) of being so               
expressive that particular instructions provided by using them can sound ambiguous. Consider,            
for instance, the sentence “shot an elephant in your pyjamas”. Does it mean one has to shoot                 
an elephant (with a rifle) while wearing pyjamas? Or that one should shoot an elephant (with a                 
water gun) drawn in pyjamas? We could come up with specific (e.g. social) conventions that               
allow us to restrict the possible meaning of a situation. In the previous example, the fact that                 
one is in a bedroom and is not living in Gabon is enough for disambiguating the sentence. While                  
natural languages are not formal by definition, several studies in Linguistics try to provide their               
formalisation using some mathematical tool, e.g. [Bernardi, 2002]. Even if one can provide a              
formal definition of a natural language, its intrinsic vagueness is still present in the language               
itself. For instance, one cannot use mathematics (or, better, logics) for removing (all) the              
ambiguities from a natural language. 
 
Programming languages, on the contrary, are formal-born languages. They oblige to specific            
syntactic rules. Such rules avoid possible ambiguous statements, mainly by restricting the            
expressiveness of the language. Therefore, all the sentences in such language are conveying             
just one possible meaning. Usually, they are based on a context-free grammar, according to              
Chomsky's classification introduced in Section "Historic hero: Noam Chomsky". Also, they can            
have a large degree of abstraction. In particular, we can distinguish three macro-sets of              
programming languages: 

● machine language is a set of instructions that can be executed directly by the central               
processing unit (CPU) of an electronic computer. For instance, the following code is the              
binary executable code (i.e. a sequence of 0 and 1) defining a function (i.e. a kind of tool                  
that takes some inputs and produces some output) for calculating the nth Fibonacci             
number: 
100010110101010000100100000010001000001111111010000000000111011

100000110101110000000000000000000000000000000000011000011100000

111111101000000010011101110000011010111000000000010000000000000

000000000001100001101010011101110110000000100000000000000000000

000010111001000000010000000000000000000000001000110100000100000

110011000001111111010000000110111011000000111100010111101100110

001001110000010100101011101011111100010101101111000011 

● low-level programming languages are languages that provide one abstraction level on           
top of the machine language. Thus it allows one to write programs in a way that is more                  
intelligible to humans. The most popular language of this type is Assembly. Even if it               
introduces humanly recognisable symbols, typically one line of assembly code          
represents one machine instruction in machine language. For instance, the same           
function for calculating the nth Fibonacci number is defined in Assembly as follows: 
fib: 

    mov edx, [esp+8] 

    cmp edx, 0 

    ja @f 

    mov eax, 0 
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    ret 

  

    @@: 

    cmp edx, 2 

    ja @f 

    mov eax, 1 

    ret 

  

    @@: 

    push ebx 

    mov ebx, 1 

    mov ecx, 1 

  

    @@: 

        lea eax, [ebx+ecx] 

        cmp edx, 3 

        jbe @f 

        mov ebx, ecx 

        mov ecx, eax 

        dec edx 

    jmp @b 

  

    @@: 

    pop ebx 

    ret 

● high-level programming languages are languages which are characterised by a strong           
abstraction from the specifiability of the machine language. In particular, it may use             
natural language words for specific constructs, to be easy to use and to understand by               
humans. Generally speaking, the more the abstraction from the low-level programming           
languages is provided, the more understandable the language is. For instance, in the             
following example, we show how to use the C programming language for implementing             
the same function as before: 
unsigned int fib(unsigned int n) { 

    if (n <= 0) 

        return 0; 

    else if (n <= 2) 

        return 1; 

    else { 

        unsigned int a,b,c; 

        a = 1; 

        b = 1; 

        while (1) { 

            c = a + b; 
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            if (n <= 3) return c; 

            a = b; 

            b = c; 

            n--; 

        } 

    } 

} 

 
We can also apply an additional level of abstraction to the previous example. For instance, we                
can provide instructions in a natural language for enabling a human-computer to execute the              
function mentioned above. Of course, none of the macro-sets mentioned above includes the             
natural language. However, the natural language would allow us to see how we can use an                
even more abstract language for instructing someone else to execute the same operation. In              
particular, a possible natural language description of the Fibonacci function could be: 
 
The function for calculating the n th Fibonacci number takes as input           

an integer “n”. If “n” is less than or equal to 0, then 0 is returned                

as a result. Otherwise, if “n” is less than or equal to 2, then 1 is                

returned. Otherwise, in all the other cases, associate the value “1”           

to two distinct variables “a” and “b”. Then, repeat the following           

operations indefinitely, until a value is returned. Set the variable          

“c” as the sum of “a” plus “b”. If “n” is less than or equal to “3”                 

then return “c”, otherwise assign the value of “b” to “a” and the             

value of “c” to “b”, and finally decrease the value of “n” by 1              

before repeating. 

 
While the previous natural language definition maps perfectly the function defined in the             
machine binary code introduced above, other possible implementations of such Fibonacci           
function are possible. One of the most famous that uses the concept of recursion could be: 
 
The function for calculating the n th Fibonacci number takes as input           

an integer “n”. If “n” is less than or equal to 0, then 0 is returned                

as a result. Otherwise, if “n” is equal to 1, then 1 is returned.              

Otherwise, return the sum of the same function with “n-1” as input            

and still the same function with “n-2” as input. 

Abstraction is the key 
We often say that we program a computer – where the word computer there refers to an                 
electronic computer. However, according to the definition we have provided in this document,             
computers can be both humans and machines. Thus, the verb to program is not very well suited                 
when we refer to human computers – we cannot program a person, can we? In this latter case,                  
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we usually say that we talk with a person to instruct her to execute specific actions, through a                  
(natural) language used as a communication channel. Thus, we think that, in this context, we               
should use the same verbs, i.e. to talk and to instruct, even when we refer to an electronic                  
computer. Writing a program is precisely that: communicating to an electronic computer in a              
(formal) language that such an electronic computer and the human instructor can both             
understand [Papert, 1980]. 
 
First, we need to agree on the language to use for the communication between us and a                 
computer (either human or machine). Then, we can start to think about possible instructions              
that, if followed systematically, can return the expected result to a particular problem. In order to                
reach this goal, we (even unconsciously) try to figure out possible solutions to such a problem                
by comparing it with other possible recurring situations that happened in the past. The idea is to                 
find some patterns that depict a possible solution for a set of abstractly-homogeneous             
situations. Once found, the solution can be reused to reach our goal if it has been successful in                  
the past. For instance, let us consider the actions that we perform at a post office. Some actions                  
are similar to those we perform when we wait for our turn to play with a slide in the playground –                     
as shown in Figure 5. 
 

 
Figure 5. Two pictures that depict the same situation, i.e. queuing, in two different contexts: a 

playground (left) and a post office (right). Left picture by Prateek Rungta, source: 
https://www.flickr.com/photos/rungta/4409560365/. Right picture by Rain Rabbit, source: 

https://www.flickr.com/photos/37996583811@N01/6158491035/. 
 
Considering the situations and contexts mentioned above, we call computational thinking a            
particular approach to “solving problems, designing systems and understanding human          
behaviour that draws on concepts fundamental to computing” [Wing, 2008]. Computational           
thinking is the thought processes that are involved when we formulate a problem and express               
the solution by using a language that a computer (either human or machine) can understand               
and execute. 
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Jeannette Wing provides an additional definition for clarifying what computational thinking is            
about [Wing, 2008]: 
 

Computational thinking is a kind of analytical thinking. It shares with mathematical            
thinking in the general ways in which we might approach solving a problem. It shares               
with engineering thinking in the general ways in which we might approach designing and              
evaluating a large, complex system that operates within the constraints of the real world.              
It shares with scientific thinking in the general ways in which we might approach              
understanding computability, intelligence, the mind and human behaviour. 

 
It is important to stress that computational thinking is not a new subject at all. Instead, it focuses                  
on specific aspects concerning computer science: the founding principles and methods instead            
of those merely related to particular tools and systems that people (often and erroneously)              
associate to any computer scientist, e.g. the electronic computer [Nardelli, 2019]. 
 
The primary notion related to computational thinking is abstraction: the “process of leaving out              
of consideration one or more properties of a complex object [...] by extracting common features               
from specific examples” [Kramer, 2007]. As highlighted in Figure 5, the skill of abstracting              
situations and notions into symbols is crucial for automating the execution of tasks using a               
computer that is responsible for interpreting such abstractions. However, usually, we use these             
abstractions unconsciously. One of the goals of computational thinking is to reshape the             
abstractions we have ingested as a consequence of our life experiences – that we are often                
unconsciously reusing. Thus, being again fully conscious of such abstractions, we can use an              
appropriate language for making them understandable to a computer, in order to automatise             
them. 
 
The final goal of computational thinking is to make one think like a computer scientist – meaning                 
that that the basic notions of computer science should be taught to all the students,               
independently from their academic roots, and should be complementary to the other thinking             
strategies one has already learnt in the past [Nardelli, 2019]. And it applies either to academic                
research (including in the Humanities, e.g. see the use of computational models and techniques              
in History research [Au Yeung, Jatowt, 2011] [Mullen, 2018] [Preiser-Kapeller, 2015]) or in             
real-life tasks. No one is saying that this way of thinking is the right one, of course. However, it                   
surely offers a complementary tool to describe reality [Nardelli, 2019]. In the future,             
computational thinking “will be an integral part of childhood education” [Wing, 2008]. It will affect               
the way people think and learn and “the way other learning takes place” [Papert, 1980]. 

Exercises 
1. What are all the possible sentences that one can produce by using the regular grammar               

introduced in Section “Historic hero: Noam Chomsky”? 



 

 

 

 

 

 

 

2. What is the result of applying the second natural language definition of the Fibonacci              
function in Section "Natural languages vs programming languages" using “7” as input? 

3. Write down two objects or situations that are referring to the same pattern if analysed 
from an abstract point of view, as introduced in Section "Abstraction is the key". What 
features do they have in common? 
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