
Introduction to Computational Thinking
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Computational thinking; Language; Noam Chomsky; Programming

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the main concepts related to computational thinking by providing a
summary of relevant topics in the areas of Linguistics and Computing in the past 200 years. The
historic hero introduced in these notes is Noam Chomsky, considered one of the fathers of
modern linguistics. His works have been an enormous impact on the Linguistics domain as well
as in the Theoretical Computer Science domain.

Historic hero: Noam Chomsky
Noam Chomsky (shown in Figure 1) is one of the most prominent scholars of the last one
hundred years. His contributions and research works have been disruptive and have changed
the way scholars have approached several domains in science and humanities. He is described
as one of the fathers of modern linguistics with Ferdinand de Saussure, Lucien Tesnière, Luis
Hjelmslev, Zellig Harris, Charles Fillmore. He is one of the very first contributors and founders of
the cognitive science field . 1

His approach to linguistics has been revolutionary, even if linguists have also debated it. The
central aspect of his approach to human language is that mathematics can be used to represent
the syntactic structure of a human language. Also, such a structure is biologically determined in

1 Cognitive science is concerned with the study of mind and its processes according to several
interdisciplinary perspectives, including linguistics, psychology, and artificial intelligence.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Universal_grammar

all humans. It is already within us since our birth, and it is a unique characteristic of human
beings only, and not of other animals. His view of human language is in high contrast with
previous ideas about the evolution of languages, which intended a human being with no
preconfigured linguistic structure. Thus, the language should have been a matter of learning a
radically new endeavour from scratch.

Figure 1. A picture of Chomsky taken in 2011. Picture by Andrew Rusk, source:

https://en.wikipedia.org/wiki/Noam_Chomsky#/media/File:Noam_Chomsky_Toronto_2011.jpg.

Among his extensive series of works in linguistics, the classification of formal grammars into a
hierarchy of increasing expressiveness is undoubtedly one of his most important contributions,
especially in the field of the Theoretical Computer Science and Programming Languages. A
formal grammar is a mathematical tool for defining a language, such as English. This tool
permits the creation of a finite set of production rules that enable the construction of any valid
syntactic sentence.

Each formal grammar is composed of a set of production rules in the form left-side ::=

right-side (according to the Backus–Naur form, or BNF), where each side can contain one
or more symbols of one or more of the following types:

● terminal (specified between quotes in BNF), which identifies all the elementary symbols
of the language in consideration (such as the nouns, verbs, etc., in English);

https://en.wikipedia.org/wiki/Universal_grammar
https://en.wikipedia.org/wiki/Noam_Chomsky#/media/File:Noam_Chomsky_Toronto_2011.jpg
https://en.wikipedia.org/wiki/Noam_Chomsky#/media/File:Noam_Chomsky_Toronto_2011.jpg
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

● non-terminal (specified between angular brackets in BNF), which identifies all the
symbols in the formal grammar that can be replaced by a combination of terminal and
non-terminal symbols.

Applying a production rule means that the sequence of symbols in the right-side part of the
rule replaces those specified in the left-side part. The rewrite process done by the
application of such production rules starts from an initial non-terminal symbol. In particular, one
applies the production rules until he/she gets a sequence of terminal symbols only. For
instance, the production rules <sentence> ::= <pronoun> "write" , <pronoun> ::=

"I" and <pronoun> ::= "you" allows one to create all the two-word sentences having
either the first or the second person singular pronoun accompanied by the verb write (e.g. “I
write”). In addition, each formal grammar must specify a start symbol, that must be non-terminal.

The hierarchy proposed by Chomsky provides a way for describing formally the relations that
may exist between different grammars in terms of the possible syntactic structures that such
grammars are able to generate. In practice, they are characterised by which kinds of symbols
one can use in the left-side and right-side parts of production rules. These grammars
are listed as follows, from the less expressive to the most expressive – we use letters from the
Greek alphabet for indicating any possible combination of terminal and non-terminal symbols,
including the empty symbols (usually represented by ε):

● regular grammars – form of production rules: <non-terminal> ::= "terminal"
and <non-terminal> ::= "terminal" <non-terminal> . Example:
<sentence> ::= "I" <verb>

<sentence> ::= "you" <verb>

<verb> ::= "write"

<verb> ::= "read"

● context-free grammars – form of production rules: <non-terminal> ::= γ . Example:
<sentence> ::= <nounphrase> <verbphrase>

<nounphrase> ::= <pronoun>

<nounphrase> ::= <noun>

<pronoun> ::= "I"

<pronoun> ::= "you"

<noun> ::= "book"

<noun> ::= "letter"

<verbphrase> ::= <verb>

<verbphrase> ::= <verb> "a" <noun>

<verb> ::= "write"

<verb> ::= "read"

● context-sensitive grammars – form of production rules: α <non-terminal> β ::= α

γ β . Example:
<sentence> ::= <noun> <verbphrase>

<sentence> ::= <subject pronoun> <verbphrase>

"I" <verb> <object pronoun> ::= "I" "love" <object pronoun>

"I" <verb> <noun> ::= "I" "read" "a" <noun>

<verbphrase> ::= <verb> <noun>

<verbphrase> ::= <verb> <object pronoun>

<subject pronoun> ::= "I"

<subject pronoun> ::= "you"

<object pronoun> ::= "me"

<object pronoun> ::= "you"

<noun> ::= "book"

<noun> ::= "letter"

● recursively enumerable grammars – form of production rules: α ::= β (no restriction
applied). Example:
<sentence> ::= <subject pronoun> <verbphrase>

"I" <verb> <object pronoun> ::= "I" <verb> "you"

"I" <verb> <noun> ::= "I" "read" "a" "book"

<verbphrase> ::= <verb> <noun>

<verbphrase> ::= <verb> <object pronoun>

<subject pronoun> ::= "I"

<subject pronoun> ::= "you"

<object pronoun> ::= "me"

<object pronoun> ::= "you"

<verb> ::= "love"

<verb> ::= "hate"

What is a computer?
The English Oxford Living Dictionary defines the term computer as an “electronic device which
is capable of receiving information (data) in a particular form and of performing a sequence of
operations [...] to produce a result”. However, the original definition of the same term, in use
from the 17th century, is slightly different. It refers to someone “who computes” or to a “person
performing mathematical calculations” – from Wikipedia. In this chapter, when we use the term
“computer”, we always consider the most generic definition: any information-processing agent
(i.e. a machine or a person acting mechanically if appropriately instructed) [Nardelli, 2019]
that can make calculations and produce some output starting from input information.

Human computers, i.e. groups of people who have to undertake long calculations for specific
experiments or measurements, have been used several times in the past. For instance, in
Astronomy, human computers have been used for calculating astronomical coordinates of
non-terrestrial things – such as the calculation of passages of Halley's Comet by Alexis Claude
Clairaut and colleagues. Napoleon Bonaparte used human computers, as well. He imposed the
creation of mathematical tables to convert from the old imperial system of measurements to the
new metric system [Campbell-Kelly, 2009] [Roegel, 2010].

https://en.oxforddictionaries.com/definition/computer
https://en.wikipedia.org/wiki/Human_computer
https://en.wikipedia.org/wiki/Halley%27s_Comet

Figure 2. Babbage Difference Engine No. 2 built at the Science Museum (London) and

displayed at the Computer History Museum in Mountain View (California). Picture by Allan J.
Cronin, source: https://commons.wikimedia.org/wiki/File:Difference_engine.JPG.

In 1822, Charles Babbage, understanding the complexity of doing all these calculations by hand
without introducing any error, started the development of an incredible machine. This machine
was called the Difference Engine, a mechanical calculator, shown in Figure 2. It aimed at
addressing similar tasks that were run by human computers, but in a way that was automatic,
faster, and error-free. Babbage was able to build just a partial prototype of this machine, and,
after the first enthusiasm, he was struggled by the limited flexibility that it offered. The Difference
Engine was not a programmable machine. It was able to compute only a fixed set of operations
on the inputs specified physically by changing specific configurations of the machine.

https://commons.wikimedia.org/wiki/File:Difference_engine.JPG
https://commons.wikimedia.org/wiki/File:Difference_engine.JPG
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Difference_engine

In order to address these limitations, in 1837, Babbage started to devise a new machine, the
Analytical Engine, summarised in Figure 3. No prototypes of this machine were built by
Babbage. However, by using it, a user could create any possible procedural calculation, making
it the very first mechanical general-purpose computer in history. In contrast to its predecessor,
the Analytical Engine was able to receive the input instructions and data using punched cards.
The use of such cards avoided the users to make any physical manipulation of the machine to
get it working.

Figure 3. A sketch by Babbage that describes the architecture of the Analytical Engine. Source:

The Analytical Engine: 28 Plans and Counting, Computer History Museum.

The ideas presented in the Analytical Engine were developed in a physical machine only one
century later. The computing technology has had a drastic change as a consequence of World
War II. Military research ordered the construction of several calculators. For instance, the
Bombe (1940), designed by Alan Turing and based on previous works by Marian Rejewski and
associates [Inman, 2020], was the main instrument used by a group of people living in the
secret British military camp at Bletchley Park to decipher German's communications encrypted
through the Enigma machine.

The Bombe was a handy and efficient machine. However, it was still partially based on
mechanical components, and it allowed their users only a specific task. Nonetheless, it was
crucial from a purely historical point of view. The first fully-digital computer, as envisioned by

https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Punched_card
http://www.computerhistory.org/atchm/httpwww-computhe-analytical-engine-28-plans-and-counting/
http://www.computerhistory.org/atchm/httpwww-computhe-analytical-engine-28-plans-and-counting/
https://en.wikipedia.org/wiki/Bombe
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Bletchley_Park
https://en.wikipedia.org/wiki/Enigma_machine

Babbage with his Analytical Engine, was developed in the United States only a few years later,
in 1946. It was the Electronic Numerical Integrator and Computer (ENIAC), shown in Figure 4,
that was programmable through patch cables and switches. This invention represents one of the
most important milestones of the history of computers - the fixed point in time that generated all
modern computers.

Figure 4. A picture of the ENIAC in the Ballistic Research Laboratory (Maryland). Source:

https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg.

Natural languages vs programming languages
There is an aspect of computers (either humans or machines) that has not directly been tackled
yet: which mechanism can we use for asking them to address a particular task? relates to the
particular communication channel we want to adopt. Considering human computers, we can use
the natural language (e.g. English) to instruct them in addressing specific actions.

A natural language is just an ordinary language (e.g. English), either written or oral, that has
evolved naturally in humans, usually without specific and premeditated planning. As we know

https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg
https://en.wikipedia.org/wiki/ENIAC#/media/File:Eniac.jpg
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language

them, natural languages have the advantage (and, on the other hand, disadvantage) of being so
expressive that particular instructions provided by using them can sound ambiguous. Consider,
for instance, the sentence “shot an elephant in your pyjamas”. Does it mean one has to shoot
an elephant (with a rifle) while wearing pyjamas? Or that one should shoot an elephant (with a
water gun) drawn in pyjamas? We could come up with specific (e.g. social) conventions that
allow us to restrict the possible meaning of a situation. In the previous example, the fact that
one is in a bedroom and is not living in Gabon is enough for disambiguating the sentence. While
natural languages are not formal by definition, several studies in Linguistics try to provide their
formalisation using some mathematical tool, e.g. [Bernardi, 2002]. Even if one can provide a
formal definition of a natural language, its intrinsic vagueness is still present in the language
itself. For instance, one cannot use mathematics (or, better, logics) for removing (all) the
ambiguities from a natural language.

Programming languages, on the contrary, are formal-born languages. They oblige to specific
syntactic rules. Such rules avoid possible ambiguous statements, mainly by restricting the
expressiveness of the language. Therefore, all the sentences in such language are conveying
just one possible meaning. Usually, they are based on a context-free grammar, according to
Chomsky's classification introduced in Section "Historic hero: Noam Chomsky". Also, they can
have a large degree of abstraction. In particular, we can distinguish three macro-sets of
programming languages:

● machine language is a set of instructions that can be executed directly by the central
processing unit (CPU) of an electronic computer. For instance, the following code is the
binary executable code (i.e. a sequence of 0 and 1) defining a function (i.e. a kind of tool
that takes some inputs and produces some output) for calculating the nth Fibonacci
number:
100010110101010000100100000010001000001111111010000000000111011

100000110101110000000000000000000000000000000000011000011100000

111111101000000010011101110000011010111000000000010000000000000

000000000001100001101010011101110110000000100000000000000000000

000010111001000000010000000000000000000000001000110100000100000

110011000001111111010000000110111011000000111100010111101100110

001001110000010100101011101011111100010101101111000011

● low-level programming languages are languages that provide one abstraction level on
top of the machine language. Thus it allows one to write programs in a way that is more
intelligible to humans. The most popular language of this type is Assembly. Even if it
introduces humanly recognisable symbols, typically one line of assembly code
represents one machine instruction in machine language. For instance, the same
function for calculating the nth Fibonacci number is defined in Assembly as follows:
fib:

 mov edx, [esp+8]

 cmp edx, 0

 ja @f

 mov eax, 0

https://en.wikipedia.org/wiki/List_of_linguistic_example_sentences
https://en.wikipedia.org/wiki/Programming_language
https://docs.google.com/document/d/1pHIvfOrmHumykZuGimr8x_mofExqndMb-iDNdZfZbeg/edit#heading=h.vubdzxcujrsm
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Assembly_language

 ret

 @@:

 cmp edx, 2

 ja @f

 mov eax, 1

 ret

 @@:

 push ebx

 mov ebx, 1

 mov ecx, 1

 @@:

 lea eax, [ebx+ecx]

 cmp edx, 3

 jbe @f

 mov ebx, ecx

 mov ecx, eax

 dec edx

 jmp @b

 @@:

 pop ebx

 ret

● high-level programming languages are languages which are characterised by a strong
abstraction from the specifiability of the machine language. In particular, it may use
natural language words for specific constructs, to be easy to use and to understand by
humans. Generally speaking, the more the abstraction from the low-level programming
languages is provided, the more understandable the language is. For instance, in the
following example, we show how to use the C programming language for implementing
the same function as before:
unsigned int fib(unsigned int n) {

 if (n <= 0)

 return 0;

 else if (n <= 2)

 return 1;

 else {

 unsigned int a,b,c;

 a = 1;

 b = 1;

 while (1) {

 c = a + b;

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)

 if (n <= 3) return c;

 a = b;

 b = c;

 n--;

 }

 }

}

We can also apply an additional level of abstraction to the previous example. For instance, we
can provide instructions in a natural language for enabling a human-computer to execute the
function mentioned above. Of course, none of the macro-sets mentioned above includes the
natural language. However, the natural language would allow us to see how we can use an
even more abstract language for instructing someone else to execute the same operation. In
particular, a possible natural language description of the Fibonacci function could be:

The function for calculating the n th Fibonacci number takes as input

an integer “n”. If “n” is less than or equal to 0, then 0 is returned

as a result. Otherwise, if “n” is less than or equal to 2, then 1 is

returned. Otherwise, in all the other cases, associate the value “1”

to two distinct variables “a” and “b”. Then, repeat the following

operations indefinitely, until a value is returned. Set the variable

“c” as the sum of “a” plus “b”. If “n” is less than or equal to “3”

then return “c”, otherwise assign the value of “b” to “a” and the

value of “c” to “b”, and finally decrease the value of “n” by 1

before repeating.

While the previous natural language definition maps perfectly the function defined in the
machine binary code introduced above, other possible implementations of such Fibonacci
function are possible. One of the most famous that uses the concept of recursion could be:

The function for calculating the n th Fibonacci number takes as input

an integer “n”. If “n” is less than or equal to 0, then 0 is returned

as a result. Otherwise, if “n” is equal to 1, then 1 is returned.

Otherwise, return the sum of the same function with “n-1” as input

and still the same function with “n-2” as input.

Abstraction is the key
We often say that we program a computer – where the word computer there refers to an
electronic computer. However, according to the definition we have provided in this document,
computers can be both humans and machines. Thus, the verb to program is not very well suited
when we refer to human computers – we cannot program a person, can we? In this latter case,

https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)

we usually say that we talk with a person to instruct her to execute specific actions, through a
(natural) language used as a communication channel. Thus, we think that, in this context, we
should use the same verbs, i.e. to talk and to instruct, even when we refer to an electronic
computer. Writing a program is precisely that: communicating to an electronic computer in a
(formal) language that such an electronic computer and the human instructor can both
understand [Papert, 1980].

First, we need to agree on the language to use for the communication between us and a
computer (either human or machine). Then, we can start to think about possible instructions
that, if followed systematically, can return the expected result to a particular problem. In order to
reach this goal, we (even unconsciously) try to figure out possible solutions to such a problem
by comparing it with other possible recurring situations that happened in the past. The idea is to
find some patterns that depict a possible solution for a set of abstractly-homogeneous
situations. Once found, the solution can be reused to reach our goal if it has been successful in
the past. For instance, let us consider the actions that we perform at a post office. Some actions
are similar to those we perform when we wait for our turn to play with a slide in the playground –
as shown in Figure 5.

Figure 5. Two pictures that depict the same situation, i.e. queuing, in two different contexts: a

playground (left) and a post office (right). Left picture by Prateek Rungta, source:
https://www.flickr.com/photos/rungta/4409560365/. Right picture by Rain Rabbit, source:

https://www.flickr.com/photos/37996583811@N01/6158491035/.

Considering the situations and contexts mentioned above, we call computational thinking a
particular approach to “solving problems, designing systems and understanding human
behaviour that draws on concepts fundamental to computing” [Wing, 2008]. Computational
thinking is the thought processes that are involved when we formulate a problem and express
the solution by using a language that a computer (either human or machine) can understand
and execute.

https://www.flickr.com/photos/rungta/4409560365/
https://www.flickr.com/photos/rungta/4409560365/
https://www.flickr.com/photos/37996583811@N01/6158491035/
https://www.flickr.com/photos/37996583811@N01/6158491035/

Jeannette Wing provides an additional definition for clarifying what computational thinking is
about [Wing, 2008]:

Computational thinking is a kind of analytical thinking. It shares with mathematical
thinking in the general ways in which we might approach solving a problem. It shares
with engineering thinking in the general ways in which we might approach designing and
evaluating a large, complex system that operates within the constraints of the real world.
It shares with scientific thinking in the general ways in which we might approach
understanding computability, intelligence, the mind and human behaviour.

It is important to stress that computational thinking is not a new subject at all. Instead, it focuses
on specific aspects concerning computer science: the founding principles and methods instead
of those merely related to particular tools and systems that people (often and erroneously)
associate to any computer scientist, e.g. the electronic computer [Nardelli, 2019].

The primary notion related to computational thinking is abstraction: the “process of leaving out
of consideration one or more properties of a complex object [...] by extracting common features
from specific examples” [Kramer, 2007]. As highlighted in Figure 5, the skill of abstracting
situations and notions into symbols is crucial for automating the execution of tasks using a
computer that is responsible for interpreting such abstractions. However, usually, we use these
abstractions unconsciously. One of the goals of computational thinking is to reshape the
abstractions we have ingested as a consequence of our life experiences – that we are often
unconsciously reusing. Thus, being again fully conscious of such abstractions, we can use an
appropriate language for making them understandable to a computer, in order to automatise
them.

The final goal of computational thinking is to make one think like a computer scientist – meaning
that that the basic notions of computer science should be taught to all the students,
independently from their academic roots, and should be complementary to the other thinking
strategies one has already learnt in the past [Nardelli, 2019]. And it applies either to academic
research (including in the Humanities, e.g. see the use of computational models and techniques
in History research [Au Yeung, Jatowt, 2011] [Mullen, 2018] [Preiser-Kapeller, 2015]) or in
real-life tasks. No one is saying that this way of thinking is the right one, of course. However, it
surely offers a complementary tool to describe reality [Nardelli, 2019]. In the future,
computational thinking “will be an integral part of childhood education” [Wing, 2008]. It will affect
the way people think and learn and “the way other learning takes place” [Papert, 1980].

Exercises
1. What are all the possible sentences that one can produce by using the regular grammar

introduced in Section “Historic hero: Noam Chomsky”?

2. What is the result of applying the second natural language definition of the Fibonacci
function in Section "Natural languages vs programming languages" using “7” as input?

3. Write down two objects or situations that are referring to the same pattern if analysed
from an abstract point of view, as introduced in Section "Abstraction is the key". What
features do they have in common?

Acknowledgements
The author wants to thank some of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna, Severin Josef Burg, Yordanka Stoyanova,
and Francesco Fernicola for having suggested corrections and improvements to the text of this
chapter.

References
Au Yeung, C., Jatowt, A. (2011). Studying how the past is remembered: towards computational
history through large scale text mining. In Proceedings of the 20th ACM international conference
on Information and knowledge management (CIKM 2011): 1231-1240. DOI:
https://doi.org/10.1145/2063576.2063755 - also available at
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.422.1205&rep=rep1&type=pdf (last
visited 13 October 2019)

Bernardi, R. (2002). The Logical Approach in Linguistics. In Reasoning with Polarity in
Categorial Type Logic. Ph. D. Thesis, Utrecht University.
http://disi.unitn.it/~bernardi/Papers/thesis-chapter1.pdf (last visited 13 October 2019)

Campbell-Kelly, M. (2009). The Origin of Computing. Scientific American, 301 (September
2009): 62-69. DOI: https://doi.org/10.1038/scientificamerican0909-62 - also available at
http://www.cs.virginia.edu/~robins/The_Origins_of_Computing.pdf (last visited 13 October 2019)

Inman, D. (2020). Rejewski & Enigma. Patterns, 1 (1): 100011.
https://doi.org/10.1016/j.patter.2020.100011

Kramer, J. (2007). Is abstraction the key to computing? Communications of the ACM, 50 (4):
36.42. DOI: https://doi.org/10.1145/1232743.1232745 - also available at
https://www.ics.uci.edu/~andre/informatics223s2007/kramer.pdf (last visited 13 October 2019)

Mullen, L. A. (2018). Computational Historical Thinking: With Applications in R.
https://dh-r.lincolnmullen.com (last visited 13 October 2019)

Nardelli, E. (2019). Do we really need computational thinking? Communications of the ACM, 62
(2): 32-35. DOI: https://doi.org/10.1145/3231587

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/SeverinJB
https://github.com/FrancescoFernicola
https://doi.org/10.1145/2063576.2063755
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.422.1205&rep=rep1&type=pdf
http://disi.unitn.it/~bernardi/Papers/thesis-chapter1.pdf
https://doi.org/10.1038/scientificamerican0909-62
http://www.cs.virginia.edu/~robins/The_Origins_of_Computing.pdf
https://doi.org/10.1016/j.patter.2020.100011
https://doi.org/10.1145/1232743.1232745
https://www.ics.uci.edu/~andre/informatics223s2007/kramer.pdf
https://dh-r.lincolnmullen.com/
https://doi.org/10.1145/3231587

Papert, S. (1980). Introduction: Computer for Children. In Mindstorms: children, computers, and
powerful ideas: 3-18. New York, USA: Basic Books, Inc. ISBN: 0-465-04627-4. Full text
available at http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf (last
visited 13 October 2019)

Preiser-Kapeller, J. (2015). Calculating the Middle Ages? The Project "Complexities and
Networks in the Medieval Mediterranean and Near East" (COMMED). Medieval Worlds, 2015.2:
100-127. DOI: https://doi.org/10.1553/medievalworlds_no2_2015s100

Roegel, D. (2010). The great logarithmic and trigonometric tables of the French Cadastre: a
preliminary investigation. Research Report. INRIA. https://hal.inria.fr/inria-00543946

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366
(1881): 3717. DOI: https://doi.org/10.1098/rsta.2008.0118 - also available at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696102/ (last visited 13 October 2019)

http://worrydream.com/refs/Papert%20-%20Mindstorms%201st%20ed.pdf
https://doi.org/10.1553/medievalworlds_no2_2015s100
https://hal.inria.fr/inria-00543946
https://doi.org/10.1098/rsta.2008.0118
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696102/

