
Dynamic programming algorithms 
Author(s) 
Silvio Peroni​ – ​silvio.peroni@unibo.it​ – ​https://orcid.org/0000-0003-0530-4305  
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and 
Italian Studies, University of Bologna, Bologna, Italy 
 
Keywords 
Fibonacci; Golden Ratio; Keeping track of partial solutions; Rabbits 
 
Copyright notice 
This work is licensed under a ​Creative Commons Attribution 4.0 International License​. You are              
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.                 
remix, transform, and build upon the material) for any purpose, even commercially, under the              
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,               
and indicate if changes were made. You may do so in any reasonable manner, but not in any                  
way that suggests the licensor endorses you or your use. The licensor cannot revoke these               
freedoms as long as you follow the license terms. 

Abstract 
This chapter introduces the notion of dynamic programming algorithms with the implementation            
of one algorithm of this kind, which calculates Fibonacci numbers. The historic hero introduced              
in these notes is Leonardo of Pisa, a.k.a. Fibonacci, who was one of the most prominent                
mathematicians of the Middle Ages. 

Historic hero: Fibonacci 
Leonardo of Pisa​, a.k.a. Fibonacci (depicted in ​Figure 1​), was a mathematician. He first              
introduced in Europe the ​Hindu-Arabic number system​, which is the numeral system that is              
commonly used worldwide even today. This introduction was possible thanks to the publication             
of his book in 1202, ​Liber Abaci (​Book of Calculation in English) ​[Fibonacci, 1202]​. The book                
describes how to use such a numeral system for addressing situations related to commerce,              
and for solving generic mathematical problems. 
 
One of the main contributions of Fibonacci in his book was a small note about a particular                 
infinite sequence of numbers​, named after him. The sequence described the number of             
male-female pairs of rabbits at a given month. The Fibonacci sequence and the numbers it               
contains (i.e. 1 1 2 3 5 8 13 21 34 55 ...) has very peculiar properties that have been studied in                      
the past by mathematicians and historians of science. It is calculated with a straightforward (and               
recursive!) approach. The Fibonacci number at a particular month ​n is equal to the sum               

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://it.wikipedia.org/wiki/Leonardo_Fibonacci
https://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
https://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
https://en.wikipedia.org/wiki/Liber_Abaci
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number


 

 

between the Fibonacci number at month ​n-1 and that one at month ​n-2​, as shown in ​Formula 1​.                  
As a side note, ​fib(0)​ and ​fib(1)​ are always equal to ​0​ and ​1​, respectively. 
 

 
Figure 1. ​A portrait of Leonardo Pisano, also known as Fibonacci. Source: 

https://commons.wikimedia.org/wiki/File:Fibonacci2.jpg​. 
 

ib(n) ib(n ) ib(n )f = f − 1 + f − 2  
Formula 1 

 
One of the most popular properties that Fibonacci did not mention in his book is the relation that                  
exists between the Fibonacci sequence and the ​golden ratio​. Mathematically speaking, two            
quantities are in the golden ratio when their ratio is the same as the ratio of their sum to the                    
larger quantity. ​Formula 2​ defines this value, where the quantity ​a​ is greater than the quantity ​b​. 

https://commons.wikimedia.org/wiki/File:Fibonacci2.jpg
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Golden_ratio


 
= Φ .618033...b

a = a
a+b def = 1  

Formula 2 
 
While this seems quite a simple ratio, at first sight, it is defined by an ​irrational number​. Thus, in                   
principle, this number sounds to be quite abstract and a purely mathematical notion. However, it               
is used and observed in several different domains, such as architecture (e.g. the ​Pantheon in               
Athens), arts (e.g. Leonardo's drawings in ​De divina proportione​), and nature (e.g. the             
arrangement of leaves​ in plants). 
 
The Fibonacci sequence is somehow closely related to the golden ratio. Taken a number in the                
sequence and dividing it by the previous one in the same sequence will return an approximation                
of the golden ratio ​Φ​, and the higher the numbers, the more precise is the value: 
 

● 5 / 3 = 1.66666... 
● 8 / 5 = 1.6 
● 13 / 8 = 1.625 
● 21 / 13 = 1.61538... 
● 34 / 21 = 1.61904... 
● 55 / 34 = 1.61764... 
● … 

Remembering solutions to sub-problems 
In the previous chapter, we have introduced how the ​divide and conquer algorithms generally              
work. Four steps characterise them: the handling of one or more base cases, the divide phase,                
the conquer step (i.e. the recursive action) and combine operation. We have explicitly said that               
such an approach is, in most cases, more efficient than the simpler ​brute force approach, at                
least for solving computational problems that can be split into two or more smaller problems of                
the same type. 
 
However, some computational problems present even additional characteristics. Sometimes,         
not only they can be split into sub-problems, but also some of these sub-problems recur during                
the execution. This situation can even happen when we have to sort books. For instance,               
suppose we have the following list of books with six items to sort: ​list(["Coraline",              

"American Gods", "Neverwhere", "Neverwhere", "American Gods",      

"Coraline"]) ​. The list contains two copies of the same book. In this case, the application of                
the divide step of the ​merge sort returns two sublists. Such lists contain, basically, different               
copies of the same books, in a different order. The left list will be ​​list(["Coraline",               

"American Gods", "Neverwhere"]) ​, while the right list will be ​​list(["Neverwhere",          

"American Gods", "Coraline"]) ​. However, even if the order between the books in the             
two sublists is different, the final result, i.e. the two lists ordered, will be the same. 

https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Parthenon
https://en.wikipedia.org/wiki/Parthenon
https://en.wikipedia.org/wiki/De_divina_proportione
https://en.wikipedia.org/wiki/Phyllotaxis
https://en.wikipedia.org/wiki/Phyllotaxis


In the ​merge sort​, we call the algorithm recursively twice (in the conquer step), even if we could,                  
in principle, run it just once, i.e. on the left list and then to reuse the positions obtained for the                    
books in such list for positioning the books in the right list. This approach could avoid spending                 
additional time in ordering something that we have already learned how to order. To implement               
this approach, we need to use some mechanism to keep track of the operation we have already                 
done. In this way, it would be possible to reuse a result of a previous problem again and directly,                   
without any further calculation. 
 
This kind of approach is known as ​dynamic programming​. Dynamic programming works like the              
divide and conquer approach. It is an algorithmic technique that splits the original computational              
problem to solve in two or more smaller problems of the same type. However, differently from                
divide and conquer, it ​stores the solutions to these subproblems for reusing them, if they               
recur. Thus, when a problem recurs, one can look at the previously-computed solution and              
reuse it directly, usually saving a considerable amount of computation time.  
 
The following (informal) steps can define the dynamic programming approach: 
 

1. [base case: solution exists] return the solution calculated previously to the problem if             
this is the case; otherwise 

2. [base case: address directly] address the problem directly on the input material if it is               
depicting an easy-to-solve problem; otherwise 

3. [divide] split the input material into two or more balanced parts, each representing a              
sub-problem of the original one; 

4. [conquer] run the same algorithm recursively for every balanced part obtained in the             
previous step; 

5. [combine] reconstruct the final solution of the problem using the partial solutions            
obtained from running the algorithms on the smaller parts of the input material; 

6. [memorize]​ store the solution to the problem to reuse if needed by other recursive calls. 
 
In the next section, we show a divide and conquer implementation of a computational problem.               
Then, we show how a dynamic programming approach decreases the number of operations that              
must be executed to have the same result as the outcome. 

Fibonacci sequence 
In ​Section "Historic hero: Fibonacci" we have introduced a particular sequence of integer             
numbers, i.e. the Fibonacci sequence, that has been used by Fibonacci himself for providing a               
theoretical and approximated way for describing the evolution of a population of rabbits during              
months. The sequence, of course, is composed of specific numbers, and the calculation of              
these numbers is the particular problem we want to solve in this section: 
 
Computational problem:​ calculate the Fibonacci number at one specific month. 

https://en.wikipedia.org/wiki/Dynamic_programming


 

 
As shown in ​Section "Historic hero: Fibonacci"​, each number in the Fibonacci sequence is              
defined recursively as the sum of the previous two numbers in the same sequence. Thus, this                
definition seems to suggest that it would be possible to write a divide and conquer algorithm to                 
address this problem effectively. In this case, we use, as base cases, the Fibonacci number               
calculated for the months ​0 and ​1​, that returns ​0 and ​1 respectively. ​Figure 2 shows the                 
execution of an algorithm for calculating the Fibonacci number. In particular, it takes month ​4 as                
input. It executes recursively the same algorithm on the smaller input data as defined by the                
definition of Fibonacci numbers until it reaches the base case. 

 

 
Figure 2. ​The application of a divide and conquer approach for obtaining the 4​th​ number in the 
Fibonacci sequence. We use coloured rectangles for showing identical calls to the Fibonacci 

algorithm with the same input. The numbers in the labels in the arrows indicate what the 
sequence of execution of the various calls is. 

 
As shown in ​Figure 2​, however, a lot of calculations are repeated multiple times. For instance,                
we run twice the executions of ​fib(2) and ​fib(0)​, while we execute three times ​fib(1)​. The                
implementation of this algorithm in Python, shown in ​Listing 1​, is described by the following               
steps: 
 

1. [base case] if the input number for which to find the Fibonacci number is ​0 or ​1​, then                  
return such input number; otherwise 

2. [divide]​ obtain the two input numbers according to the Fibonacci definition; 
3. [conquer] run the same algorithm recursively for each of the numbers obtained in the              

previous step; 
4. [combine] sum the results of the partial solutions obtained by running the two             

executions of the algorithm recursively. 
 
One can avoid repeating previously-computed solutions by adopting a dynamic programming           
approach. Part of the body of such an algorithm is very similar to the divide and conquer one                  



 

mentioned above. The real difference is in two additional steps. In the first step, we check for                 
the existing of a previously-calculated solution to the problem. The last step stores a new               
solution in memory for reusing it. ​Figure 3 describes the execution of the algorithm to find the                 
Fibonacci number at month ​4​ by reusing solutions stored in previous calls. 
 
# Test case for the function 

def test_fib_dc(n, expected): 

    result = fib_dc(n) 

    if expected == result: 

        return True 

    else: 

        return False 

 

 

# Code of the function 

def fib_dc(n): 

    if n <= 0:  # base case 1 

        return 0 

    elif n == 1:  # base case 2 

        return 1 

    else:  # recursive step 

        return fib_dc(n-1) + fib_dc(n-2) 

 

 

# Tests 

print(test_fib_dc(0, 0)) 

print(test_fib_dc(1, 1)) 

print(test_fib_dc(2, 1)) 

print(test_fib_dc(7, 13)) 

Listing 1. ​The implementation, in Python, of the divide and conquer algorithm for calculating the 
Fibonacci number. The source code of this listing is available ​as part of the material of the 

course​. 
 
There are several possible ways to store a solution to a problem. In this work, we suggest using                  
a dictionary, specifying the key as the input number (i.e. the month) used to calculate the                
Fibonacci number and the value as the result of such calculation. However, to implement the               
algorithm, we need to introduce some additional operations for managing dictionary           
appropriately. 
 
First of all, we need to check if such a dictionary includes already a particular key. We can use                   
get method of dictionaries, i.e. ​<dictionary>.get(<key>) ​, introduced in a previous          
chapter. This method will return a value if the dictionary contains the key; otherwise, it will                
return ​None​. If needed, there is another way for checking the inclusion of a key in a dictionary,                  

http://comp-think.github.io/python/fib_dc.py
http://comp-think.github.io/python/fib_dc.py


 

which is more efficient and even more natural to write and remember. We can use the                
comparison operations ​in and ​not in that we already introduced with strings. In particular,              
<key> in <dictionary> and ​<key> not in <dictionary> check if the specified key             
is or is not included in the dictionary, respectively. 
 

 
Figure 3. ​The application of a dynamic programming approach for obtaining the 4​th​ number in 

the Fibonacci sequence. We use coloured rectangles for showing identical calls to the Fibonacci 
algorithm with the same input. However, in this case, the result related to the transparent 

rectangles is obtained from previous computations of the same call (linked via the transparent 
dashed arrows). As a consequence of this reuse, we will not execute step 7 and step 8. 

 
In addition, we need to create this dictionary somehow when executing the algorithm in a way                
that can be reused by the subsequent execution provided in the recursive step. Thus, generally               
speaking, the algorithm itself should: 
 

● initialises an empty dictionary as the very first step; 
● reusing such a dictionary when needed in any recursive application of the algorithm             

itself. 
 
The, the function that implements the algorithm should be able to take the dictionary containing               
the solutions as input. In the first execution of the function, such a dictionary should be empty. 
 
Now we have all the ingredients for creating the dynamic programming algorithm for calculating              
the Fibonacci number. ​Listing 2 introduces the related Python code, which implements the             
following steps: 
 

1. [base case: solution exists] return the solution to the input number if available due to               
previous executions; otherwise 



 

2. [base case: address directly] if the input number for which to find the Fibonacci              
number is ​0​ or ​1​, then return such input number; otherwise 

3. [divide]​ obtain the two input numbers according to the Fibonacci definition; 
4. [conquer] run the same algorithm recursively for each of the numbers obtained in the              

previous step; 
5. [combine] sum the results of the partial solutions obtained by running the two             

executions of the algorithm recursively; 
6. [memorize]​ store the sum into a dictionary using the original input number as the key. 

 
# Test case for the function 

def test_fib_dp(n, d, expected): 

    result = fib_dp(n, d) 

    if expected == result: 

        return True 

    else: 

        return False 

 

 

# Code of the function 

def fib_dp(n, d): 

    # Checking if a solution exists 

    if n not in d: 

        if n <= 0:  # base case 1 

            d[n] = 0 

        elif n == 1:  # base case 2 

            d[n] = 1 

        else:  # recursive step 

            # the dictionary will be passed as input of the recursive 

            # calls of the function 

            d[n] = fib_dp(n-1, d) + fib_dp(n-2, d) 

 

    return d.get(n) 

 

 

# Tests 

print(test_fib_dp(0, dict(), 0)) 

print(test_fib_dp(1, dict(), 1)) 

print(test_fib_dp(2, dict(), 1)) 

print(test_fib_dp(7, dict(), 13)) 

Listing 2. ​The implementation, in Python, of the dynamic programming algorithm for calculating 
the Fibonacci number. The source code of this listing is available ​as part of the material of the 

course​. 
 

http://comp-think.github.io/python/fib_dp.py
http://comp-think.github.io/python/fib_dp.py


 

Thus, if we have to run the algorithm for calculating the Fibonacci number at the 4​th month, we                  
just to execute ​​fib_dp(4, dict()) ​, specifying an empty dictionary. 

Exercises 
1. Write an extension of the multiplication function introduced in the ​chapter "Recursion"​,            

i.e. ​def multiplication(int_1, int_2, solution_dict) ​, by using a        
dynamic programming approach. This new function takes in input two integers to multiply             
and a dictionary with solutions of multiplications between numbers. The function returns            
the result of the multiplication and, at the same time, modifies the solution dictionary              
adding additional solutions when found. Accompany the implementation of the function           
with the appropriate test cases. 

2. Choose any recursive algorithm introduced in the previous chapters and provide a new             
implementation of it in Python following the dynamic programming approach. 

Acknowledgements 
The author wants to thank one of the students of the ​Digital Humanities and Digital Knowledge                
second-cycle degree of the University of Bologna – ​Severin Josef Burg – for having suggested               
corrections and improvements to the text of this chapter. 

References 
Fibonacci, L. (1202). Liber Abaci.     
http://lhldigital.lindahall.org/cdm/compoundobject/collection/math/id/8734/rec/49 (last visited 21    
November 2019) 
 
 

https://comp-think.github.io/lecture-notes/08.pdf
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/SeverinJB
http://lhldigital.lindahall.org/cdm/compoundobject/collection/math/id/8734/rec/49

