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Abstract 
This chapter introduces an algorithmic technique used in constrained computational problems.           
Typical problems of this kind are those related to the resolution of abstract strategy board               
games, such as the peg solitaire. The historic hero introduced in these notes is AlphaGo, an                
artificial intelligence developed by Google DeepMind for playing the game of Go. 

Historic hero: AlphaGo 
AlphaGo (shown in Figure 1) is an artificial intelligence developed by Google DeepMind for              
playing a particular board game, i.e. Go. As already introduced in one of the first chapters, Go is                  
a very ancient abstract strategy board game. It is mainly known for being very complex to play                 
by a computer, due to its ample solution space. 
 

 
Figure 1. The logo of AlphaGo. Source: 

https://en.wikipedia.org/wiki/File:Alphago_logo_Reversed.svg. 
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In the past, scientists developed several artificial intelligence applications to play to Go             
automatically. However, all of them showed their limits when tested with human expert players              
of the game. Before 2016, no Go software was able to beat a human master. The approach                 
adopted by those systems, even if sophisticated, was not enough for emulating the actual skills               
of expert human players. 
 
In 2015, a particular department within Google declared to have developed the best artificial              
intelligence for playing Go and suggested to test it in an international match against one of the                 
greatest Go players in Europe, Fan Hui. At the time of the game, Fan Hui was a professional                  
two dan player (out of 9 dan). The match was in five sessions, and a player had to win at least                     
three sessions out of five for winning the match. AlphaGo beat Fan Hui 5-0, and has become                 
the first artificial intelligence to beat a professional human player of the game. The outcomes of                
the match were announced in January 2016 simultaneously with the publication of the Nature              
article explaining the algorithm [Silver et al., 2016]. 
 
In March 2016, AlphaGo was engaged against Lee Sedol, a professional nine dan South              
Korean Go player, one of the best players in the world. All the five sessions of the match were                   
broadcasted live in streaming video, to allow people to follow the various games. AlphaGo beat               
Lee Sedol 4-1. Finally, in May 2017, AlphaGo was involved in a match in three sessions against                 
the top-ranked player of the game, the Chinese Ke Jie. Even this time, AlphaGo beat Ke Jie 3-0.                  
As a consequence of this match, Google DeepMind decided to retire AlphaGo definitely from              
the scenes. 
 
Several professional players have stated that AlphaGo seemed to use quite new moves if              
compared with the other professional players. As a consequence of its results, as well as in                
several secondary games, Alpha Go gained recognition as a professional nine dan player by              
Chinese Weiqi Association. 
 
A final article about the latest evolution of the system, AlphaGo Zero, has been published in                
Nature the 18th of October 2017 [Silver et al., 2017]. In this article, the authors introduce the                 
best version of AlphaGo that they have developed. The Alpha Go creators trained this new               
version without using any match between human champions archived in the past, as they did for                
training AlphaGo. In particular, they trained it against itself, and it reached a superhuman              
performance after only 40 days of self-training. The new AlphaGo Zero beat AlphaGo 100-0. 

Tree of choices 
Usually, all the algorithms for finding a solution to abstract strategy board games use a tree,                
where each node represents a possible move to do on the board. Thus, the idea is that one                  
comes to a particular node after having executed a precise sequence of moves. From that node,                
one can have available an additional set of possible valid moves to perform to approach the                
solution. Of course, in order to choose a particular move, one should also check if executing                
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that move could bring to a solution to our problem or it lands to a dead-end. In this latter case,                    
one could reconsider some previous choices and, eventually, could change strategy looking for             
some other, more promising, moves to follow. 
 
Technically speaking, in the Computational Thinking domain, this approach is called           
backtracking. In practice, backtracking algorithms try to find a solution to a particular             
computational problem by identifying possible candidate solutions incrementally. Moreover, it          
abandons partial candidates once it is clear that they will not be able to provide a solution to the                   
problem. The usual steps of a backtracking algorithm can be defined as follows, and consider a                
particular node of the tree of choices as input: 

1. [leaf-win] if the current node is a leaf, and it represents a solution to the problem, then                 
return the sequence of all the moves that have generated the successful situation;             
otherwise, 

2. [leaf-lose] if the current node is a leaf, but it is not a solution to the problem, then return                   
no solution to the parent node; otherwise, 

3. [recursive-step] apply the whole approach recursively for each child of the current            
node, until one of these recursive executions returns a solution. If none of them provides               
a solution, return no solution to the parent node of the current one. 

In the next section, we illustrate the application of this technique for solving a particular board                
game: the peg solitaire. 

Peg solitaire 
The peg solitaire is a board game for one person only which involves the movement of some                 
pegs on board containing holes. Usually, in the starting situation, the board contains pegs              
everywhere except for the central position, which is empty. While there are different standard              
shapes for the board of the game, as illustrated in Figure 2, – the classic board is the English                   
one (the number 4 in Figure 2).  
 

 
Figure 2. Possible standard shapes for the board of the peg solitaire – the number 4 is the 

English one. Figure by Julio Reis, source: 
https://commons.wikimedia.org/wiki/File:Peg_Solitaire_game_board_shapes.svg. 
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The goal of the game is to come to the opposite of the starting situation. The whole board must                   
be full of holes except the central position, which must contain a peg.The goal of the game is to                   
come to the opposite of the starting situation. The whole board must be full of holes except the                  
central position, which must contain a peg. It is possible to apply repeatedly the same rule to                 
reach this goal: to move a peg orthogonally over an adjacent peg into a hole, removing the                 
jumped peg from the board. Figure 3 illustrates an example of valid moves. 
 

 
Figure 3. An example of two consecutive and valid moves on an English board. Source: 

https://ece.uwaterloo.ca/~dwharder/aads/Algorithms/Backtracking/Peg_solitaire/. 
 
The computational problem we want to address in this chapter can be defined as follows: 
 
Computational problem: find a sequence of moves that allows one to solve the peg solitaire. 
 
A reasonable approach for finding a solution to this computational problem is based entirely on               
backtracking. In particular, we should develop it according to the following steps: 

1. [leaf-win] if the last move has brought to a situation where there is only one peg, and it                  
is in the central position, then a solution has been found, and the sequence of moves                
executed for coming to this solution is returned; otherwise, 

2. [leaf-lose] if the last move has brought to a situation where there are no possible               
moves, then recreate the previous status of the board as if we did not execute the last                 
move, and return no solutions; otherwise, 

3. [recursive-step] apply recursively the algorithm for each possible valid move executable           
according to the current status of the board, until one of these recursive executions of               
the algorithm returns a solution. If none of them provides a solution, recreate the              
previous status of the board as if we did not execute the last move, and return no                 
solutions. 

The idea is to start with the initial configuration of the board as the root of a tree of moves. Then,                     
we consider all the possible configurations reachable from such a root after a valid move, and                
so on. This process, in practice, would allow us to describe all the possible scenarios with quite                 
a big tree. It is worth mentioning that it is not necessary to visit all the possible configurations.                  
Instead, the algorithm can terminate with success once it reaches a final winning configuration,              
as summarised in Figure 4. 
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Figure 4. A sketch of tree of moves a player have from the initial configuration, which is the root 

of the tree. 
 
The goal of this chapter is to develop an algorithm for finding a solution to the peg solitaire,                  
considering an alternative board, shown in Figure 5. This board is the smallest square board on                
which we can obtain the complement of a given an initial configuration of a board by replacing                 
every peg by a hole and vice versa [Bell, 2007]. The advantage of using this board is that the                   
dimension of the tree of moves is rather small if compared with the one of a classic English peg                   
solitaire board. However, it maintains, algorithmically, all the properties of the problem of the              
more complex one. 
 

 
Figure 5. The complement problem of the peg solitaire, depicted on a 6x6 square board. 



 

 

 
      (1,0)             (4,0)  

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) 

      (1,2)             (4,2)  

      (1,3)             (4,3)  

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) 

      (1,5)             (4,5)  

Listing 1. The representation of all the position available in a peg solitaire with 6x6 square 
board as a collection of tuple of two elements. 

 
To implement it in Python, we need to find a way for representing all the possible positions of                  
the peg solitaire board in a computationally sound way. To this end, we use a tuple of two                  
elements, depicting x-axis and y-axis values, as representative of a particular position. The             
collection of all these tuples, shown in Listing 1, represents our board from a purely               
computational point of view. 

 
def create_board(): 

    initial_hole = (5, 1) 

    holes = set() 

    holes.add(initial_hole) 

 

    pegs = set([ 

        (1, 0), (4, 0), 

        (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), 

        (1, 2), (4, 2), 

        (1, 3), (4, 3), 

        (0, 4), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), 

        (1, 5), (4, 5) 

    ]) 

 

    return pegs, holes 

Listing 2. The function used for initialising the 6x6 square board of a peg solitaire as shown in 
Figure 5. 

 
According to this organisation, we use two sets for representing a particular status of the board,                
i.e.: 

● the set pegs that includes all the pegs available on the board – in the initial status, this                  
set includes all the position except the final one, i.e. (3, 2) ; 

● the set holes that includes all the positions without any peg on the board – in the initial                  
status, this set includes just one position, i.e. (3, 2) . 



 

The ancillary function introduced in Listing 2, i.e. create_board() , provides the initial            
configuration of the solitaire. The result of the execution of this function is a tuple of two                 
elements. In the first position, there is a set of all the pegs at the initial state. In the second                    
position, there is a set of all the available holes at the initial state. 
 
from anytree import Node 

 

def valid_moves(pegs, holes): 

    result = list() 

 

    for x, y in holes: 

        if (x-1, y) in pegs and (x-2, y) in pegs: 

            result.append(Node({"move": (x-2, y), "in": (x, y),  

                                "remove": (x-1, y)})) 

        if (x+1, y) in pegs and (x+2, y) in pegs: 

            result.append(Node({"move": (x+2, y), "in": (x, y),  

                                "remove": (x+1, y)})) 

        if (x, y-1) in pegs and (x, y-2) in pegs: 

            result.append(Node({"move": (x, y-2), "in": (x, y),  

                                "remove": (x, y-1)})) 

        if (x, y+1) in pegs and (x, y+2) in pegs: 

            result.append(Node({"move": (x, y+2), "in": (x, y),  

                                "remove": (x, y+1)})) 

 

return result 

Listing 3. The function used for retrieving all the valid moves starting from a particular 
configuration of the solitaire board. 

 
Another essential task, we need to deal with, concerns to take all the possible moves one can                 
do according to the current configuration of the board. The approach used, described in Listing               
3 and named valid_moves(pegs, holes) , try to find all the possible moves in the              
proximity of each hole. In particular, starting from a hole defined by the coordinates (x, y) , it                 
looks for a vertical or horizontal sequence of two pegs that create the condition for performing a                 
valid move. 
 
Each move found is described by a particular small dictionary with the following three keys: 

● move, which indicates the peg one wants to move; 
● in, which indicates the position where we placed the selected peg after the move (i.e. the                

hole in consideration); 
● remove, which indicates the peg that we removed from the board as a consequence of               

the move. 



 

def apply_move(node, pegs, holes): 

    move = node.name 

    old_pos = move.get("move") 

    new_pos = move.get("in") 

    eat_pos = move.get("remove") 

 

    pegs.remove(old_pos) 

    holes.add(old_pos) 

 

    pegs.add(new_pos) 

    holes.remove(new_pos) 

 

    pegs.remove(eat_pos) 

    holes.add(eat_pos) 

 

 

def undo_move(node, pegs, holes): 

    move = node.name 

    old_pos = move.get("move") 

    new_pos = move.get("in") 

    eat_pos = move.get("remove") 

 

    pegs.add(old_pos) 

    holes.remove(old_pos) 

 

    pegs.remove(new_pos) 

    holes.add(new_pos) 

 

    pegs.add(eat_pos) 

    holes.remove(eat_pos) 

Listing 4. The two functions that apply and undo a particular move on the board. 
 
As highlighted in Listing 3, we use the compact constructor for defining dictionaries on-the-fly in               
Python, i.e. {<key_1>: <value_1>, <key_2>: <value_2>, ...} . For instance, the          
dictionary my_dict = {"a": 1, "b": 2} can be obtained as well by applying the following                
operations: my_dict = dict() , my_dict["a"] = 1 , my_dict["b"] = 2 . 
 
We encapsulate each dictionary, defining a move, as the name of a tree node. In particular, we                 
create a node by using the constructor defined by the package anytree we have introduced in                
the previous chapter. The function in Listing 3 returns a list of all the possible valid moves                 
according to the particular configuration of the board. 
 



 

We need two additional functions. They take as input a move defined by a tree node and a                  
particular configuration of the board and returns the new configuration as if we apply or undo the                 
move, respectively. These functions, i.e. apply_move(node, pegs, holes) and         
undo_move(node, pegs, holes) , are defined in Listing 4. 
 
def solve(pegs, holes, last_move): 

    result = None 

 

    if len(pegs) == 1 and (5, 1) in pegs:  # leaf-win base case 

        result = last_move 

    else: 

        last_move.children = valid_moves(pegs, holes) 

 

        if len(last_move.children) == 0:  # leaf-lose base case 

            undo_move(last_move, pegs, holes)  # backtracking 

        else:  # recursive step 

            possible_moves = deque(last_move.children) 

  

            while result is None and len(possible_moves) > 0: 

                current_move = possible_moves.pop() 

                apply_move(current_move, pegs, holes) 

                result = solve(pegs, holes, current_move) 

 

            if result is None: 

                undo_move(last_move, pegs, holes)  # backtracking 

 

    return result 

Listing 5. The final function for looking for a sequence of moves that depicts a solution to the 
peg solitaire computational problem. The source code of this listing and all the previous ones is 

available as part of the material of the course and also includes the related test cases. 
 
Finally, we need to use a particular comparison operator, i.e. is (and its inverse, is not )                
which we did not use in the past chapter. This operator checks the identity of the objects,                 
instead of the values they may refer to. In particular, <obj1> is <obj2> returns True is the                 
two objects (or two variables referring to two objects) are the same object; otherwise, it returns                
False. The is not operator works oppositely. It is worth mentioning that checking for the               
identity of two objects is different from checking for their equality (through the operator == ). In                
particular, consider the following two lists stored in different variables: 
 
list_one = list() 

list_one.append(1) 

list_one.append(2) 

list_one.append(3) 

http://comp-think.github.io/python/peg_solitaire.py


 

list_two = list() 

list_two.append(1) 

list_two.append(2) 

list_two.append(3) 

 
The expression list_one == list_two returns True since the lists are equal according to              
the values they contain. However, the expression list_one is list_two returns False            
since they are two distinct instances of the Python class list. 
 
We have now all the ingredients for implementing the function for finding a solution of the peg                 
solitaire, according to the backtracking principles introduced at the beginning of this section.             
Listing 5 introduces the final function. For running the function properly, we should initialise the               
last_move parameter as the root node of the tree of moves that will be built by the execution                  
of the function, e.g. Node("start") . 

Exercises 
1. Propose some variation to the implementation of the peg solitaire exercise in order to              

make it more efficient – in particular, avoiding unsuccessful configurations if they have             
been already encountered previously while looking for a solution. 

2. We define a labyrinth as a set of tuples representing the various cells of the paths within                 
the labyrinth. The tuples are organised in an x/y grid, similar to the way used in Listing 1                  
for the peg solitaire, such as the one proposed as follows: 
 
      (1,0)       (3,0) (4,0) (5,0) 

(0,1) (1,1) (2,1) (3,1)       (5,1) 

(0,2)       (2,2)       (4,2) (5,2) 

(0,3)       (2,3) (3,3)       (5,3) 

(0,4)                   (4,4)  

(0,5) (1,5) (2,5) (3,5) (4,5)  
 
Write the function solve_labyrinth(paths, entrance, exit, last_move) ,       
which takes as input the paths of the labyrinth (such as the ones mentioned above), two                
tuples representing the entrance and the exit of the labyrinth, and the last move did. The                
function returns the last move done to reach the exit if the labyrinth has an escape;                
otherwise, it returns None . Accompany the implementation of the function with the            
appropriate test cases. 
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