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Abstract 
This chapter introduces the notion of ​computability and the ​computational cost of algorithms.             
The historic hero presented in these notes is Alan Turing, considered the father of Theoretical               
Computer Science and Artificial Intelligence. His work on a particular model of computation,             
known as the ​Turing machine​, had been the primary tool for highlighting the possibilities and the                
limits of automatic computation and, more in general, of the modern electronic computer. 

Historic hero: Alan Turing 
Alan Mathison Turing (shown in ​Figure 1​) was a computer scientist. His works spanned several               
disciplines, including mathematics, logic, philosophy, and biology – which is why people have             
referred to him as a natural philosopher ​[Dodig-Crnokovic, 2013]​. He is considered the father of               
Theoretical Computer Science and ​Artificial Intelligence​, due to its frontier contributions that            
provided his ​theoretical machine named after him ​[Turing, 1937] . Besides, his studies on the              1

relation between electronic computers and intelligence ​[Turing, 1950] brought him to define the             
thought experiment known as the ​Turing test​.  
 

1 The Turing machine has been used for modelling plenty of situations in several domains, such as 
cellular automata ​[Wolfram, 1983]​ ​[Wolfram, 2002]​ in Applied Physics. 
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He was one of the key figures behind the decryption of ​Enigma​, the cypher machine used by                 
Nazi Germany for protecting communications . Also, his studies do not focus only on Computer              2

Science topics. In fact, they include essential works in Biology. In particular, one where he               
described the way patterns in nature (e.g. stripes, spots and spirals) may arise spontaneously              
out of a uniform state ​[Turing, 1952]​. 
 

 
Figure 1. ​Picture of Alan Turing taken in 1927. Source: 

https://en.wikipedia.org/wiki/File:Alan_Turing_Aged_16.jpg​. 

2 A story that has been recently portrayed as a movie by Morten Tyldum's​ ​The Imitation Game​. 
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The Turing machine 
In 1936, Turing developed his machine to answer an important issue related to ​Hilbert's ​decision               
problem which asks about the possibility of developing an algorithm for deciding if a ​first-order               
logic formula is universally valid or not. The problem was also analysed at the same time by                 
Alonzo Church​, by addressing it from a totally different (but pragmatically equivalent)            
perspective compared with Turing's approach. The machine proposed by Turing was only            
theoretical. Indeed, he did not build it physically. Recently, several people provided physical             
prototypes of Turing's idea, such as the one shown in ​Figure 2​. 
 

 
Figure 2. ​A physical implementation of a Turing machine with a finite tape. Picture by GabrielF, 

source:​ ​https://commons.wikimedia.org/wiki/File:Model_of_a_Turing_machine.jpg​. 
 
Broadly speaking, the Turing machine ​can be used to simulate any algorithm by means of a                
quite simple set of tools. In fact, it is composed of an infinite memory tape containing cells. Each                  
cell can contain a symbol (i.e. either ​0 or ​1​, where ​0 is the blank symbol, assigned to all the cells                     
in advance) that can be read and written by the head of the machine. The state of the machine                   
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at a specific time is recorded. The machine specifies the possible actions to perform in a finite                 
table of instructions. Each instruction in the table says what to do: write a new symbol, move the                  
head either left or right, go to a new state. The machine selects a particular instruction to                 
execute according to the current state and the symbol currently under the head. An initial state                
and zero or more final states are provided, to define where to start the process, and when to                  
finish it. 
 
For instance, in ​Table 1​, there is a representation of a table of instructions for a simple Turing                  
machine, where: ​A is the initial state, and there are no final states. Each row in the table                  
represents a particular instruction. For instance, the first row says that being in ​A​, if the head                 
reads ​0 or ​1 on the tape, then ​1 is written down, the head is moved one cell to the right, and the                       
new state of the machine becomes ​B​. 
 

Current state Tape symbol Write symbol Move head Next state 

A 0 or 1 1 right B 

B 0 or 1 0 right A 

Table 1. ​A table of instructions of a very simple Turing machine, having initial state ​A​, with no 
final states. 

 

 
Figure 3. ​A graphical representation of the execution of the Turing machine implementing the 
rules introduced in ​Table 1​.In the various figures, the blue polygon represents the head of the 
machine, positioned in a specific cell of the tape. The blue circle represents the current state, 

while the solid arrow depicts the next state, reached once the machine writes the symbol in the 
label of the solid arrow in the cell pointed by the head. Finally, the machine moves the head in 

the direction indicated on the label (where ​R​ stands for ​right​). 
 



Also, we can represent the table of instructions of a Turing machine graphically. We can use                
labelled circles for representing states. Also, we can use arrows pointing to the next states when                
a particular symbol is read on the tape. The machine writes the symbol indicated in the label of                  
an arrow when such arrow is followed. Similarly, the head of the machine is moved according to                 
the direction (i.e. left or right) indicated in the label of the arrow. For instance, in ​Figure 3​, it is                    
shown the execution of the Turing machine related to the table of instructions introduced in               
Table 1​. In particular, this Turing machine has the characteristic of running forever – it will never                 
stop its execution – since it writes several ​1s separated by ​0s indefinitely. Practically speaking,               
this Turing machine demonstrates that it is possible to ​develop algorithms that run forever              
without ever ending their execution. 
 
While the Turing machine is quite a simple tool, it enables one to model ​computation in the                 
broad sense. While Turing has not proposed it as a sketch for the development of electronic                
computers, its theoretical properties apply also to real computing machines. In particular, an             
electronic computer can compute anything that a Turing machine can compute. This property             
has been used to prove the intrinsic limitations on the power of mechanical computation. 
 
People have developed several tools to emulate a Turing machine. The ​Turing Machine             
Visualization is one of such tools, mainly designed for academic purposes. It is a simple web                
application that allows one to define all the components of a Turing machine through a               
straightforward language. Once defined the initial state, initialised the tape with ​0​s, and defined              
the table of instructions, one can watch the way the machine runs. In particular, each step of the                  
execution is shown graphically. 
 
The various variables can be specified by means of the following template: 
 
blank: '0' 

start state: <start state> 

table: 

  <state>: 

<tape symbol>: { write: <symbol>, <R or L move>: <next state> } 

 

  <end state>: 

 
Where ​blank says how to initialise the tape, the ​table is composed by one or more                
<state> ​s, one of which is used as ​<start-state> ​, and one or more (optional) ​<end              

state> ​s can be specified as well – they is recognisable since no operations have been defined                
on them. Following this template, the Turing machine described in ​Table 1​ is defined as follows: 
 
blank: '0' 

start state: A 

table: 

  A: 
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0: { write: 1, R: B} 

1: { write: 1, R: B } 

  B: 

0: { write: 0, R: A } 

1: { write: 0, R: A } 

 
Figure 4 shows the Turing machine implemented by these instructions. Three distinct areas             
realise the whole visualisation of the machine. A text box contains the rules written according to                
the template mentioned above. A graph represents the table of instructions of the machine.              
Finally, a sequence of cells represents the tape, where a yellow box highlights the head of the                 
machine. 
 

 
Figure 4.​ A screenshot of the Web application ​Turing Machine Visualization​. 

The computational cost of an algorithm 
In the previous lecture, we have defined what an algorithm and the relation that exists between                
algorithms and computers is. In the previous section, we have already seen how a simple               
machine, which implements an algorithm using a specific language, can compute indefinitely.            
Other machines could compute a result in a reasonable finite time. And, even, algorithms can               
spend an exaggerated time (also if still limited) to return a result. It can be useful to know how                   
much time indicatively an algorithm needs to return a result. 
 
This issue is the core topic of one of the essential branches of the ​theory of computation​, i.e. the                   
computational complexity theory​. The research in this field aims at classifying ​computational            
problems​. A computational problem is a problem that can be solved algorithmically by a              
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computer. Each computational problem, thus, can be classified according to a hierarchy of             
categories. Each category expresses the difficulty in solving such a problem. 
 
An important subfield of computational complexity theory is the ​analysis of algorithms​. Analysing             
an algorithm means to understand the amount of time, storage and other resources that are               
needed to execute such algorithm. In particular, usually, this analysis focuses on finding a              
particular mathematical function that relates the input of an algorithm with the number of              
instructions that are run to return the final result from that input. The smaller such function is, the                  
more efficient the algorithm will be. 
 
It is worth mentioning that the measure provided by such function is not precise since it is only                  
an upper bound of the actual performance. However, it is enough for giving an indicative idea of                 
the amount of time needed for executing a particular algorithm on a specific input. 
 
We do not want to introduce all the theoretical principles and the formal mathematical tools for                
addressing such analysis since it is out of the scope of the course. The message to reinforce is                  
that the strategy used to develop an algorithm affects, positively or negatively, its efficiency. It is                
possible to create two different algorithms addressing the same computational problem that take             
two drastic different times for returning the result. 

Can we compute everything? 
The main question one could ask after reading all the material introduced in the previous               
sections would be: can we use algorithms for computing whatever we want? In other words:               
there exists a limitation on what we can compute? Or, even: is it possible to define a                 
computational problem that cannot be solved by any algorithm? 
 
Usually, computer scientists and mathematicians use a ​reductio ad absurdum approach to            
demonstrate that something cannot exist. This approach aims at coming to a paradoxical and              
self-contradictory situation, such as the fact that the existence of an algorithm contradicts its              
existence itself. This kind of argument ​seeks to establish a contention by deriving an absurdity               
from its denial, thus arguing that a thesis must be accepted because its rejection would be                
untenable ​[Rescher, 2017]​, and, eventually, generates paradoxes. 
 
Paradoxes have been largely used in Logic in the past. ​While they are funny stories to tell for                  
teaching, they are also powerful tools for showing limits or constraints of a particular formal               
aspect of a field or situation. For instance, one of the most famous paradoxes in mathematics is                 
the ​Russell paradox​, discovered by ​Bertrand Russell in 1901. It was one of the most important                
discoveries of the beginning of the twentieth century. It has proved that the current set theory                
proposed by ​Georg Cantor​, and used as the foundation for ​Gottlob Frege​'s work on the               
definition of the fundamental laws of arithmetic, led to a contradiction. Thus, it invalidated the set                
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theory and the work done by Frege – that was in print when Russell communicated his                
discovery to him.​ A variation to that paradox could be formulated as follows. 
 
Librarian paradox: In the Library of Babel, there are people of two different kinds. The first kind                 
of people – named ​no-needed – are those who look for a book themselves. The other type of                  
people – named ​help-needed – are those who do not look for a book themselves, and thus they                  
need help doing it. One of the people in the library is the librarian. The librarian looks for books                   
for all those, and ​those only​, who do not look for books themselves (i.e. the ​help-needed                
people). The question is: who looks for books to the librarian? 
 
Resolution: On the one hand, if the librarian is a ​no-needed person (who looks for a book                 
herself) then the premise that the librarian should look for books only for ​help-needed people               
would not be valid anymore. Thus, if she is a ​no-needed person, she is an ​help-needed person,                 
which is a contradiction. On the other hand, if the librarian is an ​help-needed person – and, as                  
such, she is not able to look for books herself – she should be helped by the librarian, who is                    
herself! Therefore, if she is an ​help-needed person, she is also a ​no-needed person – which is                 
another contradiction. 
 
 

 
Figure 5. ​A graphical representation of the librarian paradox, which is a puzzle derived from 

Russell's paradox. 



 

 
One of the most attractive problems that computer scientists studied in the past was part of the                 
23 open mathematical problems that ​David Hilbert proposed in 1900. It is known as the ​halting                
problem​. This problem was meant to prove whether a particular algorithm will terminate its              
execution at some point or it will run forever. In the previous lecture, we have developed our first                  
algorithm. We have defined it in a way that allows it to return always a value as an outcome –                    
which confirms that we can create algorithms that terminate. Besides, as demonstrated in             
Section "The Turing machine"​, we have shown also an algorithm (implemented by the Turing              
machine summarised in ​Figure 3​) that runs indefinitely. Thus, having an approach that allows us               
to discover systematically whether an algorithm will terminate or will not is a great tool to have.                 
Indeed, it would enable the identification of computationally-ill algorithms. 
 
Alan Turing created his machine for answering such a question: to prove if we can develop a                 
Turing machine (i.e. an algorithm) which can decide whether another machine will terminate its              
execution or will not. An approximation of the solution provided by Turing is introduced as               
follows. It uses a ​reductio ad absurdum argument, which is very close to the one introduced in                 
Figure 5​ for resolving the librarian paradox. 
 
Suppose we have the algorithm “does it halt” as shown in ​Figure 6​, which returns ​yes if the                  
execution of a particular input algorithm terminates, while it returns ​no otherwise. This algorithm              
is just hypothetical. We are supposing that we can develop it in some way, without providing it in                  
any particular programming language. 
 

 
Figure 6.​ The flowchart of the “does it halt” algorithm, that returns “yes” if the input algorithm 

halts, and returns “no” otherwise. 
 
Then we reuse the “does it halt” algorithm for developing a new algorithm, shown in the                
flowchart in ​Figure 7​. In particular, this new algorithm takes another algorithm as input and, if                
the input algorithm stops, then it runs forever. Otherwise, if the input algorithm does not               
terminate, then it stops. Please note that we know how to implement the various steps of this                 
new algorithm. In fact, checking whether the input algorithm can terminate or not is actually               
provided by the algorithm “does it halt” introduced in ​Figure 5​. The “Run forever” process               
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operation is implementable by a machine, since we have already developed a Turing machine              
(presented in ​Section "The Turing machine"​) that does so. 
 
Now, the question is: what happens if we try to execute the algorithm described in ​Figure 7 by                  
passing itself as input? We have two possible situations: 
 

● If the algorithm “does it halt” says that our algorithm depicted in ​Figure 7 ​stops​, then our                 
algorithm ​runs forever​; 

● if the algorithm “does it halt” says that our algorithm depicted in ​Figure 7 ​does not stop​,                 
then our algorithm ​stops​. 

 
Hence, whatever is the behaviour of the algorithm introduced in ​Figure 7​, it always generates a                
contradiction. As a consequence, the main algorithm used in the decision widget, i.e. the              
algorithm “​does it halt”, cannot be developed. Thus, the answer to the halting problem              
mentioned before is that ​the algorithm that checks if another one stops cannot exist​. 
 

 
Figure 7.​ The flowchart of an algorithm that runs forever if the execution of another algorithm 

specified as input (and checked by using the algorithm presented in ​Figure 6​) stops, and it stops 
otherwise. Please note that the process step “Run forever” of the flowchart algorithm can be 
easily developed. In fact, in ​Section "The Turing machine"​, we have shown a simple Turing 

machine that implements such behaviour. 
 
This result had a disruptive effect on the perception of computational abilities at large. In               
practice, Turing's machines and their analyses posed clear limits to what we can compute. They               
enabled him to explicitly state that there are specific computational problems, such as the              
halting problem mentioned in this section, that cannot be solved. 

Exercises 
1. Write the table of instructions of a Turing machine with four states – ​A (initial state), ​B​, ​C​,                  

and ​D (final state) – such that, once reached the final state, only the cells immediately on                 



 

 

 

 

 

the left and on the right of the initial position of the head of the machine will have the                   
value ​1​ specified. The final state must not have any instruction specified in the table. 

2. Consider an algorithm that takes as input a 0-1 sequence of exactly five symbols, and               
returns a ​1 if the sequence contains at least three ​consecutive ​1​s, and returns a ​0                
otherwise. Implement the algorithm with a Turing machine, where the cell correspondent            
to the starting position of the head is where the final result must be stored. Also, the five                  
cells following the starting position of the head are initialised with the 0-1 sequence of               
five symbols used as input of the algorithm. 

3. Consider an algorithm that takes as input a 0-1 sequence of exactly five symbols, and               
returns a ​1 if the sequence contains at least three ​1​s ​in any order​, and returns a ​0                  
otherwise. Implement the algorithm with a Turing machine, where the cell correspondent            
to the starting position of the head is where the final result must be stored. Also, the five                  
cells following the starting position of the head are initialised with the 0-1 sequence of               
five symbols used as input of the algorithm. 
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