
Programming languages
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Grace Hopper; Python; Test-driven development

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter provides a general introduction to programming languages and then focus on a
particular language: Python. The historic hero introduced in these notes is Grace Hopper. She
was the first programmer of the Harvard Mark I computer. She was responsible for the
development of some of the first programming languages.

Historic hero: Grace Hopper
Grace Brewster Murray Hopper (depicted in Figure 1) was a computer scientist. She was the
first programmer of the Harvard Mark I, i.e. a general-purpose electromechanical computer. The
Harvard Mark I was used during the Second World War, fully-inspired by Babbage's Analytical
Engine. She pushed for the need of having machine-independent programming languages. This
idea brought her in the development of COBOL, one of the first high-level programming
languages, which is still used today for some applications.

COBOL (i.e. the common business-oriented language) is a programming language designed for
business use. It brings a quite extensive use of English terms for describing the operations of a
program. The idea of adopting, for the very first time, English for commands made the
programming language a bit more verbose but also more readable and even self-documenting.
Just for making an example, in today's languages if we want to compare if the value assigned to
a variable x is greater than the one assigned to another variable y we should use x > y . In

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Grace_Hopper
https://en.wikipedia.org/wiki/Harvard_Mark_I
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/COBOL

COBOL, the same comparison is made with the following instruction: x IS GREATER THAN

y .

Figure 1. Portrait of Grace Hopper. Picture by James S. Davis, source:

https://en.wikipedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered).jpg.

A brief history of programming languages
After the Second World War, people have developed several programming languages according
to several design principles and intended usage in terms of the computational problems to be
solved. While all of them, in principle, make it possible to develop solutions for any solvable
computational problem, some of them are more suited for a specific domain than others. For
instance, COBOL has been developed for business applications, while FORTRAN was
designed to deal with scientific computing.

While an extensive analysis of all the programming languages is out of the scope of the topics
of this book, it is worth mentioning, at least graphically, a timeline of their evolution, shown in

https://en.wikipedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered).jpg
https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/History_of_programming_languages
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Fortran

Figure 2. As highlighted in the timeline, we are going to introduce and use a particular
programming language in this course, i.e. Python, according to its third version released in
2006.

Figure 2. A graphic timeline summary of some of the main programming languages from 1954
to 2017. The different line colour is used only for readability reasons, and it does not have any

particular meaning.

Python
Python is a high-level programming language for general-purpose programming. It is currently
one of the most used languages for programming in the Web, for Data Science and Natural
Language Processing tasks. The good thing about Python is that it is one of the most simple
languages for starting to learn how to program and create software.

In this course, we will use Python in its latest version, i.e. Python 3. Luckily, there are a lot of
resources freely available online for learning this language from scratch, such as:

● the introductory book Dive into Python 3 [Pilgrim, 2009];

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)

● the official documentation of the language;
● an online platform for playing with Python 3 without installing any software on your

computer;
● an interactive online course for learning Python from scratch;
● a book introducing all the basic Python features, which is particularly suited for Digital

Humanities [Tagliaferri, 2018];
● another book entirely dedicated to problem solving and algorithms developed in Python

[Miller and Ranum, 2011];
● a digital book which contains an introduction to Python for the Humanities.

The goal of this chapter is to develop our first algorithm in Python. The algorithm we produce is
the one we have introduced in the second chapter of this course, that can be described
informally by the following natural language text:

Consider three different strings as input, i.e. two words and a bibliographic entry of a
published paper. The algorithm must return: the number 2 if the bibliographic entry
contains both words; the number 1 if the bibliographic entry contains only one word; the
number 0 otherwise.

First incomplete version, in Python
In Python, we can create a new algorithm by implementing a new function. We can introduce a
function by means of the keyword def (which stands for define). The keyword def must be
followed by a name (e.g. the name of the algorithm) and a comma-separated list of input
parameters between round brackets. For instance, def contains_word(first_word,

second_word, bib_entry) defines the function contains_word , which takes three
parameters as input.

Each function definition is followed by : and all the instructions to execute must be specified in
the following lines, as an indented block (preferably using four spaces), as illustrated in Listing
1. The name of a function, as well as all its parameters, cannot contain space characters and
must always start with a letter – e.g. this_is_my_parameter is correct, while
1_parameter is not.

def contains_word(first_word, second_word, bib_entry):
 ...

 ...

 ...

Listing 1. The definition of an algorithm, with its input parameter, and some dots that identify
where to put the instruction of such algorithm – one per line, indented of 4 space characters.

In this first version of the algorithm, we would like to introduce only some basic constructs of
Python. To this end, we provide only a partial solution in this subsection, which we finalise in the

https://docs.python.org/3/
https://docs.python.org/3/
https://repl.it/
https://repl.it/
https://www.sololearn.com/Play/Python/
https://www.sololearn.com/Play/Python/
http://www.karsdorp.io/python-course/
https://comp-think.github.io/book/02.pdf

following subsections, following the same strategy used in the previous chapter entitled
"Algorithms". In particular, we want to say that if the bibliographic entry contains the first input
word, then the number 1 is returned; otherwise, a 0 is returned. Listing 2 shows this incomplete
version of the algorithm in Python.

def contains_word(first_word, second_word, bib_entry):

 if first_word in bib_entry:

 return 1

 else:

 return 0

Listing 2. An incomplete version of the algorithm that is used to introduce some basic
constructs of Python.

In this incomplete version, there are already specified some important constructs of Python. The
first one is the if-else conditional block. This kind of block allows one to execute a particular
instruction if a condition is true (the if statement). Otherwise, if the condition specified is false,
an alternative set of instructions is executed instead (the else statement). We can avoid
specifying the else clause if no alternative set of instructions is needed. The instructions to
perform in one case or the other are within indented sub-blocks (again four additional spaces).
As already introduced in Listing 2, every time we have to add a new block of instructions, we
need to use : after the statement of interest, as shown in Listing 3.

if <condition>:
 ...

 ...

else:

 ...

 ...

Listing 3. The generic structure of an if-else conditional block.

The condition specified in the if statement shown in Listing 2 allows one to check if a certain
string is contained in another one by means of the command in. In particular, <string1> in

<string2> would be true if the <string2> contains <string1>. As anticipated in the previous
chapters, a string is a particular type of value composed by a sequence of characters and
defined by using the quotes. For instance, "Peroni" , "Osborne" , and "Peroni, S.,

Osborne, F., Di Iorio, A., Nuzzolese, A. G., Poggi, F., Vitali, F.,

Motta, E. (2017). Research Articles in Simplified HTML: a Web-first

format for HTML-based scholarly articles. PeerJ Computer Science 3:

e132. e2513. DOI: https://doi.org/10.7717/peerj-cs.132" are all strings.

Note that <string1> and <string2> are just placeholders for strings: we can use either strings,
e.g. "Peroni" in "Peroni beer" , or variables referring to strings, as shown in Listing 2. A
variable is a symbolic name that contains some information referred to as a value (e.g.

https://comp-think.github.io/2018-2019/lecture-notes/02%20-%20Algorithms.pdf
https://comp-think.github.io/2018-2019/lecture-notes/02%20-%20Algorithms.pdf
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Variable_(computer_science)
https://en.wikipedia.org/wiki/Variable_(computer_science)

first_word). For instance, any input value is, in fact, a particular kind of variable. As defined
previously, all the input parameters of the algorithm are expected to refer to strings.

The last construct of the partial algorithm introduced in this subsection is the return statement.
It is defined by specifying the token return followed by the value (or the variable containing a
value) that must be returned. The execution of a return statement concludes the algorithm
execution. Thus, all the instructions that follow that statement are not processed anymore. In the
example in Listing 2, two different numbers are returned, depending on the execution of a
particular branch of the if-else block. In particular, the algorithm returns a 1 if the condition of the
if statement is true, while it returns a 0 otherwise. Python permits to write any number as it is –
e.g. 42 and -42 for positive/negative integers, 1.625 and -1.625 for positive/negative
decimals. Note that strings and numbers are distinct kinds of objects – e.g. the string "42" and
the number 42 (without the quotes) are not defining the same value at all.

Complex boolean statements
The original text of the algorithm, introduced at the beginning of Section "Python", needs to
condition to be true for returning a 2. Indeed, the bibliographic entry must contain both the
words. In Python, this can be defined by means of a hierarchy of if-else blocks, as shown in
Listing 4.

if first_word in bib_entry:
 if second_word in bib_entry:

 return 2

 else:

 return 1

else:

 if second_word in bib_entry:

 if first_word in bib_entry:

 return 2

 else:

 return 1

 else:

 return 0

Listing 4. A hierarchy of if-else blocks for describing the three possible return values of the
algorithm.

However, the readability of the previous example is rather difficult, since it repeats several times
the same conditions, even if they have been specified in a different order. Thus, Python makes
available some operations for assessing compositions of multiple boolean values, and for
deriving boolean values from number and string comparisons. A boolean value (or, directly,

https://en.wikipedia.org/wiki/Boolean_data_type
https://en.wikipedia.org/wiki/Boolean_data_type

boolean) can be only one of two distinct and disjoint values, True and False. For instance, the 1

condition first_word in bib_entry returns a particular boolean: True if the bibliographic
entry contains the word, False otherwise. In algorithms (and in any programming language), we
use boolean values for organising the execution flow of conditional blocks.

Sometimes it is useful to combine somehow two distinct boolean values in order to simplify the
organisation of the conditional blocks. This can be done by using specific operators that apply to
one (<operator> <B1>) or two boolean values (<B1> <operator> <B2>), and return a
new boolean value. These operators are called logical not (not in Python, which applies to one
boolean value only), logical and (and , between two boolean values), and logical or (or ,
between two boolean values). They are logical operators since all of them derive from the logic
Boole proposed in his works on Boolean algebra. Table 1 summarises their use and shows the
truth table of the application of such operators. In particular, given two boolean input values, B1
and B2, the table shows the result of all their possible combinations according to the specific
operator. Thus, for instance, in the example in Listing 4, we could return a 2 if the bibliographic
reference contains both the strings, expressing this constraint in one condition only, i.e.
first_word in bib_entry and second_word in bib_entry .

B1 B2 not B1 B1 and B2 B1 or B2

True True False True True

True False False False True

False True True False True

False False True False False

Table 1. The truth table of all the boolean operations.

Round brackets can be used for grouping boolean operations, e.g. (True and False) or

False applies the and operation first, and the result is used as the first value of the or
operation – given False as result. If there are no brackets, the application order proceeds as
follows. First, one must execute all the not operation. Then, one must perform all the and
operations. Finally, one must assess the remaining or operations. For instance, True and

not False or False returns True since it is interpreted as (True and (not False))

or False .

S1 S2 S1 < S2 S1 <= S2 S1 > S2 S1 >= S2 S1 == S2 S1 != S2 S1 in S2 S1 not in S2

"Alice" "Bob" True True False False False True False True

"Alice" "Alice" False True False True True False True False

Table 2. The truth table of all string comparisons.

1 The word boolean was named after George Boole, who was a great logician of the 19th century.

https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/George_Boole

In addition to the aforementioned boolean operations, it is also possible to use string
comparisons for obtaining boolean values. Table 2 shows all the comparisons that one can
apply on two strings, i.e. <S1> <operator> <S2> . In this case, the operators are those
typically used numerical comparison, i.e.:

● < , less than;
● <= , less than or equal to;
● > , greater than;
● >= greater than or equal to;
● == , equal to;
● != , different from;
● in , included in;
● not in , not included in.

In the case of strings, a string S1 is less than another string S2 if the former one precedes the
latter one according to a pure alphabetic order. Of course, Python uses the alphabetic order for
assessing when a string is greater than another one.

Note that we can use similar operators (excluding in) for comparing numbers, as shown in
Table 3. In this case, the standard mathematical numeric comparisons hold.

N1 N2 N1 < N2 N1 <= N2 N1 > N2 N1 >= N2 N1 == N2 N1 != N2

3 4 True True False False False True

4 4 False True False True True False

Table 3. The truth table of all the arithmetic comparisons.

Thus, we can reuse these boolean operations to rewrite the if-else blocks shown in Listing 4
more understandably. Listing 5 Shows the result.

if first_word in bib_entry and second_word in bib_entry:
 return 2

else:

 if first_word in bib_entry or second_word in bib_entry:

 return 1

 else:

 return 0

Listing 5. A hierarchy of if-else blocks shown in Listing 4 rewritten according to the boolean
operations presented in this section.

Conditional statements with multiple branches
While in the previous subsections we have improved the readability of the if-else blocks, Python
allows us to do even better. First of all, in the two if statements in Listing 5, we ask Python to
evaluate the same sub-conditions (i.e. first_word in bib_entry and second_word

in bib_entry) twice. This can be easily avoided by defining new variables. A variable is
defined by specifying its name (without spaces), followed by an = and the value to associate to
it, i.e. <variable_name> = <variable_value> . The value can be specified directly (e.g. a
number) or indirectly by using other existing variables, or even complex operations.

In our example, we could create two variables, called contains_first_word and
contains_second_word , assigned to the boolean returned by the aforementioned string
comparisons, i.e. first_word in bib_entry and second_word in bib_entry
respectively. In that way, we can reuse such variables in the two if statements, as shown in
Listing 6.

if contains_first_word and contains_second_word:
 return 2

else:

 if contains_first_word or contains_second_word:

 return 1

 else:

 return 0

Listing 6. The if-else blocks introduced in Listing 5 where the conditions in if statements are
specified by means of two variables.

We can improve further the readability of the code by collapsing occurrences of else statements
when these contain an if statement as their first instruction. In this case, both the else-if pair can
be safely replaced by an elif (i.e. else if) statement, which specifies the same condition used in
the if statement. Thus, the code in Listing 6 can be rewritten as shown in Listing 7.

if contains_first_word and contains_second_word:

 return 2

elif contains_first_word or contains_second_word:

 return 1

else:

 return 0

Listing 7. The if-else blocks introduced in Listing 6 collapsed my means of an elif statement.

Final algorithm
In this chapter, we have seen some initial constructs that Python makes available for developing
an algorithm. In particular, we have introduced how to define a function with input parameters,
variables, conditional statements (i.e. if , elif , and else), string, numeric, and boolean
values, boolean operations and string and numeric comparisons. All these constructs enabled
us to define our algorithm, which is finally introduced in Listing 8.

def contains_word(first_word, second_word, bib_entry):

 contains_first_word = first_word in bib_entry

 contains_second_word = second_word in bib_entry

 if contains_first_word and contains_second_word:

 return 2

 elif contains_first_word or contains_second_word:

 return 1

 else:

 return 0

Listing 8. The final algorithm developed.

It is worth mentioning that the algorithm proposed initially in chapter "Algorithms" as a flowchart
does not map with the one presented in Listing 8. This misalignment has been done on
purpose, so as to explicitly show that it is entirely possible to develop two different algorithms for
addressing the same computational problem.

As a final note, and in addition to use the Python interpreter installed on your machine (in any),
several Web applications have been developed for testing your Python code. Often, they show
which kinds of objects Python creates when running. One of these tools, i.e. Python Tutor, is
very helpful for people that are approaching Python for the very first time. Indeed, it allows one
to see what happens as the (electronic) computer runs each line of code.

Test-driven development
There are different development strategies that can be adopted when one wants to understand
whether the piece of software he/she has developed is correct or not – i.e. if it is returning the
expected result. One of the most used and practical methods used by programmers is called
Test-Driven Development (or TDD) [Beck, 2003], summarised in Figure 3.

In practice, when one has a computational problem to solve and he/she needs to develop a
piece of software to address it, the first thing to develop is a test so as to check if the software
that eventually will be developed behaves correctly (i.e. returns the correct result) or not.

https://comp-think.github.io/2018-2019/lecture-notes/02%20-%20Algorithms.pdf
http://www.pythontutor.com/
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

Usually, thus, such test is actually software which must be developed to test the correctness of
another software.

Writing a test before starting to develop software allows one to focus on the problem one has to
solve and on the requirements of the software since the very beginning. This approach is also
useful when one decides to extend an existing software. In this case, first, one has to develop
the test for assessing the correctness of such a new extension. Second, one needs to write the
extension and check if the extended software passes the new test.

Figure 3. A diagram summarising the steps of the test-driven development approach. Picture by

Xarawn, source: https://en.wikipedia.org/wiki/File:TDD_Global_Lifecycle.png.

Summarising, the main steps of the test-driven development process are:

1. Write a new test – once understood the computational problem to solve and the related
requirements, a new test is written and then added to a collection of previously
developed tests.

2. Run all the tests – we run all the tests available in the aforementioned collection. If the
new test fails, then there is no code available that addresses the particular
computational problem described by the test. In the first iteration of the test-driven
development, the test fails since no code has been developed yet.

3. Write the new code – in this step, we develop a new piece of code to pass the test just
added in the collection.

4. Run again all the tests – in this passage, one checks if the addition of such new code
developed to address the new test has not broken the other features already developed,

https://en.wikipedia.org/wiki/File:TDD_Global_Lifecycle.png

and tested by all the other tests available in the collection (in any). In case any test fail,
then the new code must be corrected until all the tests are passed successfully.

5. Refactor the code – after several iterations of the process, the code grows naturally, and
it may be necessary to refactor it so as to clean the code as much as possible, so as to
guarantee its readability and maintainability in the long term. As a suggestion, every
refactoring action should be checked by re-run all the tests available, so as to be sure
that a modification to the code does not break its correctness as well.

Following this approach to the development is very useful when one has to implement a
particular algorithm in Python. It enables one to check its correctness according to different
kinds of input that can be used to run the algorithm itself. Listing 9 shows a plausible test to
verify the accuracy of the algorithm introduced in this chapter.

def test_contains_word(first_word, second_word, bib_entry, expected):

 result = contains_word(first_word, second_word, bib_entry)

 if expected == result:

 return True

 else:

 return False

Listing 9. The test function developed for testing the contains_word code, introduced in
Listing 8.

It is possible to use such tests function in order to test the contains_word code with different
kinds of input values and related expected results. For instance, Listing 10 shows the test code,
the code of the algorithm presented in this chapter, and some checks done by running the test
code (and thus the algorithm itself) with different input values. The result of the various
inspections is printed on screen by using the Python function print() .

def test_contains_word(first_word, second_word, bib_entry, expected):

 result = contains_word(first_word, second_word, bib_entry)

 if expected == result:

 return True

 else:

 return False

def contains_word(first_word, second_word, bib_entry):

 contains_first_word = first_word in bib_entry

 contains_second_word = second_word in bib_entry

 if contains_first_word and contains_second_word:

 return 2

 elif contains_first_word or contains_second_word:

 return 1

 else:

 return 0

Three different test runs

print(test_contains_word("Shotton", "Open",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 2))

print(test_contains_word("Citations", "Science",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 1))

print(test_contains_word("References", "1983",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 0))

Listing 10. The test code, the algorithm implementation in Python, and three distinct run of the
test with different configurations and expected results. The source code of this listing is

available as part of the material of the course.

The proposed development approach could seem banal at first sight. However, it is adopted
regularly by programmers to think carefully about the requirements of a particular code to
develop and to avoid the introduction of bugs.

We suggest adopting the test-driven development approach systematically when implementing
algorithms in Python since it is a handy tool for checking the correctness of the outcomes of an
algorithm. To this end, specific tests will anticipate all the algorithms in the following chapters, by
following the template shown in Listing 11. We will replace all the words between angular
brackets with the appropriate names. Initially, we will replace all the Python instructions of the
algorithm with the instruction return , to say that the algorithm is not returning anything. This
lack in returning a value allows all the new tests to fail, as prescribed by the second step of the
test-driven development process, introduced above.

def test_<algorithm>(<algorithm input params>, expected):

 result = <algorithm>(<algorithm input params>)

 if result == expected:

 return True

 else:

 return False

def <algorithm>(<algorithm input params>):

 return

print(test_<algorithm>(<algorithm input params 1>, <expected_1>))

print(test_<algorithm>(<algorithm input params 2>, <expected_2>))

…

Listing 11. The template that will be used for presenting all the algorithms introduced in this
course, accompanied by its tests.

http://comp-think.github.io/python/first_algorithm.py

Developing an algorithm in Python: a methodology
If this is your first experience in using a programming language, it could be a bit difficult to
approach the development of an algorithm in Python. Thus, in order to facilitate such
development, having some guidelines to follow can be helpful. In this last section of the chapter,
we introduce such a guideline that should be followed to implement in Python an algorithm
informally described in a natural language text. These guidelines are split into seven distinct
steps: Identify, Emulate, Fail, Draw, Assess, Translate, Succeed.

Identify: identification of input and output
The first thing to do is to clearly identify the input and output of the algorithm. This can be done
directly on the natural language description of the algorithm to implement. For instance,
considering again the description of the algorithm mentioned above, we can highlight the input
in blue and bold and the output in red and italic:

Consider three different strings as input, i.e. two words and a bibliographic entry of a
published paper. The algorithm must return the number 2 if the bibliographic entry
contains both words; the number 1 if the bibliographic entry contains only one word; the
number 0 otherwise.

Emulate: execute the algorithm using several inputs
Once identified the input and output material, it is important to understand which output should
be returned by the algorithm according to different input values. The idea is to emulate the
execution of an algorithm on specific input by following the informal instruction provided in the
natural language description. This operation allows one to understand what it should be the
expected result of the algorithm execution before having a concrete implementation of the
algorithm at hand. This passage is essential to understand the expected behaviour of an
algorithm.

For instance, the following list introduces three different sets of input (in blue and bold) and the
related output that should be returned (in red and italic):

● input: first word “Shotton”, second word “Open”, bibliographic entry “Shotton, D.
(2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a” – output: 2;

● input: first word “Citations”, second word “Science”, bibliographic entry “Shotton, D.
(2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a” – output: 1;

● input: first word “References”, second word “1983”, bibliographic entry “Shotton, D.
(2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a” – output: 0.

Fail: develop the test code and run it for the first time
Following the template in Listing 11, now it is time to develop the first empty Python
implementation of the algorithm. We will define only the input parameters and return nothing.
We create the tests to execute on the implemented algorithm, based on the emulation
performed in the previous step. All such tests must fail since there is no Python implementation
of the algorithm at this stage.

Listing 12 shows this first Python implementation and the related test for the example mentioned
above. All the tests in the listing fails if we ask a computer to execute this Python code. It is
possible to use Python Tutor to see a full execution of the code in Listing 12.

Test case for the algorithm

def test_contains_word(first_word, second_word, bib_entry, expected):

 result = contains_word(first_word, second_word, bib_entry)

 if expected == result:

 return True

 else:

 return False

Code of the algorithm

def contains_word(first_word, second_word, bib_entry):

 return

Three different test runs

print(test_contains_word("Shotton", "Open",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 2))

print(test_contains_word("Citations", "Science",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 1))

print(test_contains_word("References", "1983",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 0))

Listing 12. The test code, the algorithm empty implementation in Python returning nothing, and
three distinct run of the test with different configurations and expected results. The source code

of this listing is available as part of the material of the course.

Draw: create the flowchart diagram of the algorithm
Before starting to implement the algorithm in Python, it is useful to sketch visually the
instructions that the algorithm should define. To this end, we create a flowchart to address the
specification provided in the natural language definition of the algorithm. For instance, Figure 4
shows a flowchart of a possible implementation of the algorithm.

http://pythontutor.com/visualize.html#code=%23%20Test%20case%20for%20the%20algorithm%0Adef%20test_contains_word%28first_word,%20second_word,%20bib_entry,%20expected%29%3A%0A%20%20%20%20result%20%3D%20contains_word%28first_word,%20second_word,%20bib_entry%29%0A%20%20%20%20if%20expected%20%3D%3D%20result%3A%0A%20%20%20%20%20%20%20%20return%20True%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20False%0A%0A%0A%23%20Code%20of%20the%20algorithm%0Adef%20contains_word%28first_word,%20second_word,%20bib_entry%29%3A%0A%20%20%20%20return%0A%0A%0A%23%20Three%20different%20test%20runs%0Aprint%28test_contains_word%28%22Shotton%22,%20%22Open%22,%0A%20%22Shotton,%20D.%20%282013%29.%20Open%20Citations.%20Nature,%20502%3A%20295%E2%80%93297.%20doi%3A10.1038/502295a%22,%202%29%29%0Aprint%28test_contains_word%28%22Citations%22,%20%22Science%22,%0A%20%22Shotton,%20D.%20%282013%29.%20Open%20Citations.%20Nature,%20502%3A%20295%E2%80%93297.%20doi%3A10.1038/502295a%22,%201%29%29%0Aprint%28test_contains_word%28%22References%22,%20%221983%22,%0A%20%22Shotton,%20D.%20%282013%29.%20Open%20Citations.%20Nature,%20502%3A%20295%E2%80%93297.%20doi%3A10.1038/502295a%22,%200%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
http://comp-think.github.io/python/first_algorithm_empty.py

Figure 4. The algorithm implemented with a flowchart.

Assess: check if the flowchart returns the correct output
After developing the flowchart, it is essential to test it by trying to run it using the input defined in
the step “Emulate”. We can act as a computer by executing the instructions in the flowchart
using all the input material described in “Emulate”. If the output values returned are the ones we
expected, then we can proceed to the next step (“Translate”). Otherwise, if some execution
returned an unexpected output, we need to go back to the previous step and change something
in the flowchart.

Executing the flowchart in Figure 4 with the set of inputs mentioned in the example in step
“Emulate”, all the output returned by each execution are compliant with the expected outcomes.

Translate: convert the flowchart into Python
In this step, we convert all the various instructions depicted by the flowchart widgets into
particular Python constructs. In particular, the input widget should have been already converted
into the parameters of the empty Python function developed in step “Fail”. The output widgets
must be translated by using the return instruction. Each decision widget must be expressed
by an if-else conditional block. While the process widgets must be expressed as simple Python
instructions (e.g. assignments to variables).

Test case for the algorithm

def test_contains_word(first_word, second_word, bib_entry, expected):

 result = contains_word(first_word, second_word, bib_entry)

 if expected == result:

 return True

 else:

 return False

Code of the algorithm

def contains_word(first_word, second_word, bib_entry):

 if first_word in bib_entry and second_word in bib_entry:

 return 2

 elif first_word in bib_entry or second_word in bib_entry:

 return 1

 else:

 return 0

Three different test runs

print(test_contains_word("Shotton", "Open",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 2))

print(test_contains_word("Citations", "Science",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 1))

print(test_contains_word("References", "1983",

 "Shotton, D. (2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a", 0))

Listing 13. The test code, the algorithm full implementation in Python, and three distinct run of
the test with different configurations and expected results. The source code of this listing is

available as part of the material of the course.

Listing 13 shows the final Python implementation of the algorithm and the related test for the
example mentioned above.

Succeed: check if the Python code returns the correct output
Finally, we should test the Python implementation of the algorithm according to the tests
developed in step “Sketch”. If all the output values returned by running the Python tests are
compliant with the ones we expected, we have finished. Otherwise, if some execution returned
an unexpected output, we need to go back to the previous step and change something in the
Python implementation of the algorithm.

All the tests introduced in Listing 13 are passed as expected. It is possible to use Python Tutor
to see a full execution of such code.

Exercises
1. What is the boolean value of not (not True or False and True) or False ?
2. What is the boolean value of "spam" not in "spa span sparql" and not

("egg" > "span") ?
3. Following the template in Listing 11, write in Python the algorithm proposed originally in

Figure 4 of the chapter entitled "Algorithms" as a flowchart (which uses a different
approach compared to the one discussed in this chapter), and accompany such code
with the related test function and some executions with varying values of input.

Acknowledgments
The author wants to thank some students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna (a) to have suggested Miller and Ranum's
book [Miller and Ranum, 2011] about Python, problem solving and algorithms, which has been
added to the list of material suggested for learning Python of this chapter (Sebnem Kabadayi),

http://comp-think.github.io/python/first_algorithm_no_assignements.py
http://pythontutor.com/visualize.html#code=%23%20Test%20case%20for%20the%20algorithm%0Adef%20test_contains_word%28first_word,%20second_word,%20bib_entry,%20expected%29%3A%0A%20%20%20%20result%20%3D%20contains_word%28first_word,%20second_word,%20bib_entry%29%0A%20%20%20%20if%20expected%20%3D%3D%20result%3A%0A%20%20%20%20%20%20%20%20return%20True%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20False%0A%0A%0A%23%20Code%20of%20the%20algorithm%0Adef%20contains_word%28first_word,%20second_word,%20bib_entry%29%3A%0A%20%20%20%20if%20first_word%20in%20bib_entry%20and%20second_word%20in%20bib_entry%3A%0A%20%20%20%20%20%20%20%20return%202%0A%20%20%20%20elif%20first_word%20in%20bib_entry%20or%20second_word%20in%20bib_entry%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%200%0A%0A%0A%23%20Three%20different%20test%20runs%0Aprint%28test_contains_word%28%22Shotton%22,%20%22Open%22,%0A%20%22Shotton,%20D.%20%282013%29.%20Open%20Citations.%20Nature,%20502%3A%20295%E2%80%93297.%20doi%3A10.1038/502295a%22,%202%29%29%0Aprint%28test_contains_word%28%22Citations%22,%20%22Science%22,%0A%20%22Shotton,%20D.%20%282013%29.%20Open%20Citations.%20Nature,%20502%3A%20295%E2%80%93297.%20doi%3A10.1038/502295a%22,%201%29%29%0Aprint%28test_contains_word%28%22References%22,%20%221983%22,%0A%20%22Shotton,%20D.%20%282013%29.%20Open%20Citations.%20Nature,%20502%3A%20295%E2%80%93297.%20doi%3A10.1038/502295a%22,%200%29%29&cumulative=false&curInstr=0&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
https://comp-think.github.io/book/02.pdf
https://comp-think.github.io/book/02.pdf
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://twitter.com/sebnemka

(b) to have proposed the use of Python Tutor as an application for making the execution of a
Python code clear to a novice (Bruno Sartini), (c) to have corrected a mistake in the order of
application of boolean operations in Python (Alessandra Foschi), and (d) to have suggested
corrections and improvements to the text of this chapter (Francesco Fernicola and Margherita
Martinelli). The author wants also to thank Paolo Ciancarini, professor in Software Engineering
at the Department of Computer Science and Engineering, University of Bologna, to have
suggested the adoption of the test-driven development as a teaching tool for the students of the
course.

References
Beck, K. (2003). Test-Driven Development by Example. Addison Wesley. ISBN:
978-0321146533, freely available at
https://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/Kent
Beck_TDD_byexample.pdf

Miller, B. N., Ranum, D. L. (2011). Problem Solving with Algorithms and Data Structures using
Python. ISBN: 978-1590282571. Freely available at
https://runestone.academy/runestone/static/pythonds/index.html (last visited 2 November 2019)

Pilgrim, M. (2009). Dive into Python 3. ISBN: 978-1430224150. Freely available at
https://diveintopython3.problemsolving.io/ (last visited 2 November 2019)

Tagliaferri, L. (2018). How To Code in Python. ISBN: 978-0999773017. Freely available at
https://www.digitalocean.com/community/books/digitalocean-ebook-how-to-code-in-python (last
visited 2 November 2019)

http://www.pythontutor.com/
https://www.instagram.com/brunosartini/
https://github.com/FrancescoFernicola
https://github.com/margheritamartinelli1997
https://github.com/margheritamartinelli1997
https://www.unibo.it/sitoweb/paolo.ciancarini
http://www.cse.unibo.it/en
https://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/KentBeck_TDD_byexample.pdf
https://www.eecs.yorku.ca/course_archive/2003-04/W/3311/sectionM/case_studies/money/KentBeck_TDD_byexample.pdf
https://runestone.academy/runestone/static/pythonds/index.html
https://diveintopython3.problemsolving.io/
https://www.digitalocean.com/community/books/digitalocean-ebook-how-to-code-in-python

