
Brute-force algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Betty Holberton; Go; Linear search; Insertion sort

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the notion of brute-force algorithms with the implementation of two
algorithms of this kind: linear search and insertion sort. The historic hero introduced in these
notes is Betty Holberton. She was one of the first programmers of the ENIAC, and one of the
key people for the development of several programming languages and algorithms for sorting
objects.

Historic hero: Betty Holberton
Frances Elizabeth – knows as Betty – Holberton, shown in Figure 1, was one of the first
programmers of the Electronic Numerical Integrator and Computer (ENIAC). The funds of the
United States Army permitted the development of this earliest electronic and general-purpose
computer between 1943 and 1946. Besides, she contributed to developing several
programming languages, such as COBOL and FORTRAN. She created the first statistical
analysis tool, used for analysing the data of the United States Census in 1950.

She dedicated a considerable part of her work in the development of algorithms for sorting the
elements in a list. The activity of sorting things is a typical human activity. It can be, of course,
automatised using computers, and it is a desirable property to have for addressing several
tasks.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Betty_Holberton
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Mainframe_sort_merge
https://en.wikipedia.org/wiki/Mainframe_sort_merge
https://en.wikipedia.org/wiki/Mainframe_sort_merge

Figure 1. Picture of Betty Holberton in front of the ENIAC. Source:
https://commons.wikimedia.org/wiki/File:Betty_Holberton.jpg.

Of course, sorting things is an expensive task, in particular, if you have to order billions of items.
However, having such items sorted in some way is crucial for several tasks that we can perform
on the list that contains them. For instance, in libraries, books are ordered according to specific
guidelines such as the Dewey classification. Such a classification allows one to cluster books
according to particular fields, and each cluster contains books ordered according to the authors'
names and the book title. With this kind of order, the librarian can find a requested title avoiding
to look at the billion books available one by one, thus saving a considerable amount of time,
after all. Therefore, to sort things in advance is a satisfactory practice if one has to search these
things several times in the future.

https://commons.wikimedia.org/wiki/File:Betty_Holberton.jpg
https://en.wikipedia.org/wiki/Dewey_Decimal_Classification
https://en.wikipedia.org/wiki/Dewey_Decimal_Classification

May the (brute) force be with you
In this chapter, for the very first time, we start to talk about problem-solving methods. In
Computer Science, problem-solving is the activity of creating a computer-interpretable process
(i.e. an algorithm) for solving some given problem, e.g. ordering all the books alphabetically in a
library. Computer scientists have proposed several different methods for solving problems,
grouped into general categories. Probably, the more uncomplicated class of problem-solving
techniques is the brute-force approach.

Figure 2. The game of Go, which cannot be solved efficiently through a brute-force approach.

Picture by Goban1, source: https://commons.wikimedia.org/wiki/File:FloorGoban.JPG.

https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Brute-force_search
https://en.wikipedia.org/wiki/Brute-force_search
https://commons.wikimedia.org/wiki/File:FloorGoban.JPG
https://commons.wikimedia.org/wiki/File:FloorGoban.JPG

Brute-force algorithms are these processes that reach the perfect solution to a problem by
analysing all the possible candidate solutions. There are advantages and disadvantages in
adopting such kind of approach. Usually, a brute-force approach is simple to implement, and it
will always find a solution to the computational problem, by considering iteratively all the
possible solutions one by one. However, its computational cost depends strictly on the number
of available candidate solutions. Thus, often, for practical problems with a vast solution space, it
is a rather slow, even if simple, approach to adopt. A good suggestion is to use such a brute
force approach when the problem size is small.

Abstract strategy board games, such as Chess or Go, belong to that set of computational
problems that have a quite huge solution space. Writing a brute-force algorithm which can play
the game appropriately requires to consider all the possible legal moves that are available on
the board (shown in Figure 2). According to John Tromp, the number of all the possible legal
moves in Go was determined to be
2081681993819799846994786333448627702865224538845305484256394568209274196127
3801537852564845169851964390725991601562812854608988831442712971531931755773
6620397247064840935 [Tromp, 2016]. That makes a brute-force approach intractable, even for
an electronic computer.

Python has two alternatives for creating iterative blocks: for-each loops and while loops. The
first kind of iteration mechanism is provided in Python through for statement, illustrated in
Listing 1. All the instructions within the for block are repeated for each item in a collection (a
list, a queue, etc.).

for item in <collection>:

 # do something using the current item
Listing 1. The general structure of a for-each loop in Python.

from collections import deque

def stack_from_list(input_list):

 output_stack = deque() # the stack to create

 # Iterate each element in the input list and add it to the stack

 for item in input_list:

 output_stack.append(item)

 return output_stack

Listing 2. A simple function that takes a list as input and creates a stack with all the values the
list contains – by using a for-each loop. The source code of this listing is available as part of the

material of the course.

https://en.wikipedia.org/wiki/Abstract_strategy_game
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Foreach_loop
https://en.wikipedia.org/wiki/While_loop
http://comp-think.github.io/python/stack_from_list.py
http://comp-think.github.io/python/stack_from_list.py

The for-each loop is handy when we want to iterate on all the elements of a list. For instance,
one can apply some operations on each of them, or find a particular value – as discussed in
more detail in Section "Linear Search". Or, we can use a for-each loop for creating a stack with
all the elements included in a list, as shown by the simple algorithm in Listing 2.

while <condition>:

 # do something until the condition is true
Listing 3. The general structure of a while loop in Python.

The while loop, instead, works in a slightly different way. Python allows us to create it by using a
while statement (as shown in Listing 3). The while statement will repeat all the instructions
that are contained in such block until the condition specified is true. For instance, it is possible to
use a while statement for implementing the run_forever function that maps the Turing
machine introduced in the chapter "Computability". Listing 4 shows one of its possible
implementation in Python.

def run_forever():

 value = 0

 while value >= 0:

 value = value + 1

Listing 4. Another simple algorithm that sums 1 to a starting value indefinitely. The source code
of this listing is available as part of the material of the course.

In the following sections, we reuse some of these iterations to implement two brute-force
algorithms for searching the position of an item in a list, and for ordering a list. These are known
as linear search and insertion sort.

Linear search
Searching for the position in which a particular value is in a list is an ordinary operation, which
has applications in several real-life tasks. For instance, consider again the example of the library
introduced in Section "Historic hero: Betty Holberton". Once a librarian has received a particular
request for a book, she consults the catalogue of all the library books. Then, she finds the
appropriate location of the requested book. This scenario is a sort of real applications of the
aforementioned abstract problem of searching a value in a list, which is formally defined as
follows:

Computational problem: find the position of the first occurrence of a value within a list.

While several approaches can be used to find an element in a list, we focus on a particular
algorithm, called linear search. This approach is pretty simple. The idea is to iterate over all the
items contained in an input list one by one. Then, one must check if each of them is equal to the

https://comp-think.github.io/book/03.pdf
http://comp-think.github.io/python/run_forever.py
https://en.wikipedia.org/wiki/Linear_search

value we are looking for, specified as input. Once one found the input value in the list, she
returns its position in the list. If the list does not contain the input value, she returns no position
at all.

We need to clarify some aspects of the description of the linear search algorithm before
providing its implementation in Python. The first one is the fact that an item in a list has a
specific position, which is something quite natural if you think about it. However, in the previous
chapter, we have not mentioned how to get such a position. Besides, there is this aspect typical
of Computer Science, that wants to number every position starting from 0, instead of 1. Thus,
for instance, looking at the books in Figure 3, Terry Pratchett's The Carpet People has position
0, James Ponti's Dead City has position 1, and so on.

Figure 3. The position numbers assigned to a book of a list according to the typical Computer

Science habit – which starts numbering from 0.

for <var_item_1>, <var_item_2>, ... in <collection of tuples>:

 # here you can use directly the variables defining

 # the various items in the tuple
Listing 5. How Python allows one to decouple tuples in for-each loops involving a collection of

tuples, by assigning a variable to each item in the tuple.

Python allows one to use the function enumerate(<list>) for retrieving the current position
of an item in a list that is accessed using a for-each loop. This function takes as input a list of
values and returns a kind of list (it is an enumerate object: it behaves like a list, but it is not a
list) of tuples. Each tuple contains two elements: the first element is the position of the item in
consideration within the list, while the second element is the item itself. In Python, a tuple is

https://en.wikipedia.org/wiki/Tuple

created by specifying comma-separated values between round brackets – for instance,
my_tuple = (0, 1, 2, 3, 4, 5) assigns a tuple with six numbers to my_tuple . While
tuples could be perceived similar to lists, they are not. The main difference with lists is that
tuples do not provide any way for updating them with a new value since they do not permit the
append operation. Thus, once a tuple is created, it stays forever.

Test case for the algorithm

def test_linear_search(input_list, value_to_search, expected):

 result = linear_search(input_list, value_to_search)

 if expected == result:

 return True

 else:

 return False

Code of the algorithm

def linear_search(input_list, value_to_search):

 # iterate all the items in the input list,

 # getting also their position on the list

 for position, item in enumerate(input_list):

 # check if the current item is equal to the value to search

 if item == value_to_search:

 # if so, the position of the current item is returned

 # and the algorithm stops

 return position

Three different test runs

print(test_linear_search([1, 2, 3, 4, 5], 3, 2))

print(test_linear_search(["Alice", "Catherine", "Bob", "Charles"],

 "Denver", None))

print(test_linear_search(["Ron", "Harry", "Hermione"], "Ron", 0))

Listing 6. The linear search algorithm described in Python, including its test case. The source
code of this listing is available as part of the material of the course.

Considering these aspects, running the function enumerate(list(["a", "b", "c"]))
will return the following enumeration of tuples: enumerate([(0, "a"), (1, "b"), (2,

"c")]) , where the first item of each tuple is the position that the second item of the tuple has in
the original list. Also, Python allows us to decouple the items in a tuple by specifying names for
each item with variables created in the for statement on-the-fly, as shown in Listing 5. Thus,
for instance, a for-each loop like for position, item in enumerate([(0, "a"),

(1, "b"), (2, "c")]) will assign 0 to position and "a" to item in the first iteration, 1 to
position and "b" to item in the second iteration, and 2 to position and "c" to item in the
third iteration.

http://comp-think.github.io/python/linear_search.py

list_of_books = list(["Coraline", "American Gods",
 "The Graveyard Book", "Good Omens",

 "Neverwhere"])

linear_search(list_of_books, "The Graveyard Book")

FOR-EACH LOOP EXECUTION
enumerate(input_list) will result in:
enumerate([(0, "Coraline"), (1, "American Gods"),
(2, "The Graveyard Book"), (3, "Good Omens"),

(4, "Neverwhere")])

Iteration 1
position = 0
item = "Coraline"
item == value_to_search is False
Continue to the next iteration

Iteration 2
position = 1
item = "American Gods"
item == value_to_search is False
Continue to the next iteration

Iteration 3
position = 2
item = "The Graveyard Book"
item == value_to_search is True
Return the position (i.e. 2) and end the execution of the algorithm

Listing 7. An example of the execution steps of the linear search algorithm implemented.

There is an aspect that is implicit in the description of the linear search algorithm introduced
before. Indeed, the algorithm should not return any position if the value to search is not present
in the list. In Python, this can be implemented by returning nothing (i.e. by not ever executing
the statement return) or explicitly by returning a particular object that means nothing, i.e.
None .

At this point, we have all the ingredients for developing the linear search algorithm in Python,
shown in Listing 6. To understand how the algorithm works, we have prepared a description of
the various execution steps (shown in Listing 7) of the for-each loop introduced in the algorithm.
This description would allow the reader to have a first glance at how iterative loops work from a
purely computational point of view.

Insertion sort
As already mentioned in Section "Historic hero: Betty Holberton", the task of ordering a
sequence of items is an operation we usually have to deal with in everyday life. Recalling the
example of the library, having the books sorted will make the operation of searching them more
efficient. It would allow us to avoid using naive approaches for the search, e.g. the one
introduced in Section "Linear search". These naive approaches are quite expensive if we have
billions of books to check.

Figure 4. The execution of the insertion sort algorithm using the following list of book titles as
input: Coraline, American Gods, The Graveyard Book, Good Omens, Neverwhere. The book
highlighted by a bold red border is the one currently selected in the particular iteration of the
algorithm. The red arrow shows the assigned position of the book in the output list. We use

transparent filter on books considered in previous iterations of the process.

In this section, we propose one particular brute-force algorithm for addressing the following
computational problem:

Computational problem: sort all the items in a given list.

The algorithm that we want to use for addressing the aforementioned computational problem is
called insertion sort. It is one of the simplest sorting algorithms to implement , and it is quite 1

efficient for small lists. The idea behind this algorithm is the following. It considers the items in
the list one by one, according to the order they have been placed. Thus, at each iteration, it
removes one item from the input list. Then, it finds the right location for it in the output list by
looking at the items the output list contains starting from the last one (i.e. the rightmost one).
Finally, it inserts it in the location found. The algorithm finishes when there are no more items to
add in the output list. Figure 4 shows an example of the execution of this algorithm.

def insertion_sort(input_list):

 result = list() # A new empty list where to store the result

 # iterate all the items on the input list

 for item in input_list:

 # initialise the position where to insert the item

 # at the end of the result list

 insert_position = len(result)

 # iterate, in reverse order, all the positions of all the

 # items already included in the result list

 for prev_position in reversed(range(insert_position)):

 # check if the current item is less than the one in

 # prev_position in the result list

 if item < result[prev_position]:

 # if it is so, then the position where to insert the

 # current item becomes prev_position

 insert_position = prev_position

 # the item is inserted into the position found

 result.insert(insert_position, item)

 return result # the ordered list is returned

Listing 8. The insertion sort algorithm described in Python. The source code of this listing is
available as part of the material of the course, and includes also the test case of the algorithm.

1 For a more comprehensive discussion and examples on sorting algorithms, please see the Visualgo
webpage about them and a creative Youtube video showing fifteen distinct sorting algorithms in action.

https://en.wikipedia.org/wiki/Insertion_sort
https://en.wikipedia.org/wiki/Insertion_sort
http://comp-think.github.io/python/insertion_sort.py
https://visualgo.net/en/sorting
https://visualgo.net/en/sorting
https://www.youtube.com/watch?v=kPRA0W1kECg

To provide a Python implementation of this algorithm, we need to introduce two functions and
one additional operation applicable to lists. The first function we need to use is
range(<stop_number>) . It takes a non-negative number as input. It returns a kind of list (i.e.
a range object behaving like a list) of all numbers from 0 to the one preceding stop_number .
Thus, for instance, range(4) returns the range([0, 1, 2, 3]) , while range(0) returns
the empty range object range([]) .

The other function is reversed(<input_list>) . This function takes a list as input. It returns
a kind of list, i.e. an iterator for iterating the items in the list in reversed order. Thus, for instance,
reversed(list([0, 1, 2, 3])) returns iterator([3, 2, 1, 0]) . We can use
these two functions in combination. They allow us to obtain the positions of the items already
ordered in past iterations of the algorithm. For instance, reversed(range(2)) returns
iterator(range([1, 0])) starting from the position (i.e. 2) of the third item in the input
list.

In addition, we need a way for selecting an item in a list and for inserting an item in a specific
position in a list. For addressing these tasks, Python makes available the additional list methods
<list>[<position>] and <list>.insert(<position>, <item>) . In particular, the
former returns the item in the list at the specified position – e.g. if we have the list my_list =

list(["a", "b", "c"]) , my_list[1] returns "b". The latter method allows one to put
<item> in the position specified, and it shifts all the elements with position greater than or
equal to <position> of one position – e.g., by applying my_list.insert(1, "d") , the list
in my_list is modified as follows: list(["a", "d", "b", "c"]) .

At this point, we have all the ingredients for developing the insertion sort algorithm in Python,
shown in Listing 8.

Exercises
1. Write down the execution steps of linear_search(list(["Coraline",

"American Gods", "The Graveyard Book", "Good Omens",

"Neverwhere"]), "The Sandman") , as explained in Listing 7.
2. Create a test case for the algorithm introduced in Listing 2.
3. Write in Python the function def my_enumerate(input_list) which behaves like

the built-in function enumerate() introduced in Section "Linear search" and returns a
proper list, and accompany the function with the related test case. It is not possible to
use the built-in function enumerate() in the implementation.

4. Write in Python the function def my_range(stop_number) which behave like the
built-in function range() introduced in Section "Insertion sort" and returns a proper list,
and accompany the function with the related test case. It is not possible to use the
built-in function range() in the implementation.

5. Write in Python the function def my_reversed(input_list) which behave like the
built-in function reversed() introduced in Section "Insertion sort" and returns a proper
list, and accompany the function with the related test case. It is not possible to use the
built-in function reversed() in the implementation.

Acknowledgements
The author wants to thank one of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna, Severin Josef Burg, for having suggested
corrections to the text of this chapter.

References
Tromp, J. (2016). Counting Legal Positions in Go. http://tromp.github.io/go/legal.html (last
visited 10 November 2017)

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/SeverinJB
http://tromp.github.io/go/legal.html

