
Organising information: unordered
structures
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Dictionary; Jorge Borges; Infinity; Set

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the main concepts related to some of the most important data structures
for creating and handling sets and dictionaries. The historic hero introduced in these notes is
Jorge Luis Borges, considered one of the most famous Argentinian writers of the past century.
Among his vast work, he wrote several short stories focussed on the exploration of
mathematical concepts and limits.

Historic hero: Jorge Luis Borges
Jorge Luis Borges, shown in Figure 1, was an Argentine short-story writer, poet, and essayist,
who produce several works laying between philosophical literature and fantasy genre. In his
short novels, he explored several aspects and situations related to dreams, labyrinths, libraries,
mirrors, the notion of infinity, and religions, among others.

One of his most known stories is entitled The Library of Babel [Borges, 1941]. In this short
piece, he describes an incredibly big library, made of hexagonal rooms. In four of the walls of
each room, there were 20 bookshelves (5 bookshelves for each wall). Each bookshelf contained
35 books. Each book counted precisely 410 pages of 40 lines each, and each line contained
precisely 80 characters. From one of the two empty walls, one could access to a hallway with

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Jorge_Luis_Borges
https://en.wikipedia.org/wiki/The_Library_of_Babel

two small rooms (one where to sleep standing up, the other with a bathroom) and to the stairs to
get to higher hexagonal rooms. The whole library contained all the books ever written by using
every possible combination of 25 characters: 22 letters, the period, the comma, and the space.
Of course, the main parts of the books contained a nonsense sequence of characters, while
others (or even limited parts of them) were, indeed, describing situations using an intelligible
language. However, even between those, some books negated the statements of the others
explicitly. Thus, the narrator suggested that we are in the presence of all the possible written
books. Books that, even when they make sense, are useless because they describe any likely
fact from all the possible perspectives. Thus, there is no absolute truth available, and all the
possibilities are possible.

Figure 1. A picture of Jorge Luis Borges at L'Hôtel in Paris. Source:

https://commons.wikimedia.org/wiki/File:Jorge_Luis_Borges_Hotel.jpg.

The opening sentence is of particular interest: “[the Library] is composed of an indefinite and
perhaps infinite number of hexagonal galleries”. In this passage, the narrator suggests that

https://commons.wikimedia.org/wiki/File:Jorge_Luis_Borges_Hotel.jpg

there is an infinite number of books in the library, contained in an infinite number of rooms.
However, is this the case?

Understanding infinity is a matter of personal perception of things. Often we use to refer to an
infinite amount of something (time, space, etc.) when we are speaking about a huge mass of
stuff. Stuff that is delimited by some physical or social constraints. The Library of Babel falls in
these kinds of situation. Even if the narrator says explicitly that the library is infinite, actually it
can contain only 2⋅101834097 of books [Foulds, 2017]. We can obtain the previous number by
considering all the possible combination of all the finite set of characters. Characters that can
appear in all the 40 pages in all the books the library contains. And this number exists, even if it
is so big that is not manageable by our mind and, thus, we tend to identify it to infinity, while it is
not. As a support to this non-infinity, someone has also tried to implement the Library as a
digital space.

Of course, mathematical infinity exists, as an abstract concept – e.g. think about the set of all
the prime numbers, which is an infinite set. However, a computer is physically limited in space
and has a limited set of resources. Thus, a computer can only approximate the concept of
infinity. For instance, we can implement an algorithm that runs forever in a specific programming
language. However, if we ask an electronic computer to run it we will see that it may stop
anyway due to some external reasons: a blackout, the breaking of some hardware necessary
for the correct execution of its processes, etc.

Considering the applications and implementations of computational systems, we must be aware
that infinity (e.g. the infinite tape of a Turing Machine, the endless execution of an algorithm,
etc.) is an illusion. It is just a theoretical tool which allows us to sketch out possible borders for
real-world problems.

A clarification: classes and methods in Python
In programming languages, classes are extensible templates for creating objects having a
specific type. In practice, all the values (e.g. numbers and strings) and other entities (e.g. lists
and stacks) we create are objects of a specific class. The creation of objects of a specified kind
is possible by calling a constructor, i.e. a particular function (e.g. list() for lists) which creates
a new object of that class.

The advantage of organising all these types of values as classes is that each object made
available a set of methods that allow one to interact with the object itself. A method is a
particular kind of function that can be run only if directly called via an object. Their fingertips is
structured as follows: <object>.<method>(<param_1>, <param_2>, ...) . For
instance, methods of the class list define all the operations we have introduced for manipulating
lists, e.g. <list>.append(<item>) , <list>.remove(<item>) , etc.

https://libraryofbabel.info/
https://libraryofbabel.info/
https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/Infinity
https://en.wikipedia.org/wiki/Euclid%27s_theorem
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Method_(computer_programming)

It is possible to create our classes and methods. However, this topic goes beyond the actual
scope of this book. If interested in understanding how to create these items, please refer to the
documentation provided in the chapter "Programming languages".

Unordered structures
In this chapter, we will introduce two specific data structures, that are discussed in detail in the
following sections, i.e. sets and dictionaries. They are among the most basic and used data
structures in algorithms (and, more concretely, in programs). They do not specify any order for
their elements. Finally, they do not allow repetitions – i.e. the same value cannot be specified
twice.

Sets
A set is a countable collection of unordered and non-repeatable elements. It is countable
because we can use the built-in function len() (introduced some chapters ago, when we
talked about lists) for counting the elements it contains. Its elements are unordered because the
order of the insertion operations does not provide any cardinality relation among such elements.
Finally, its elements are not repeatable because the same value cannot be included twice in the
set.

Of course, there exist several real examples of such abstract sets in real-life objects. For
instance, in Figure 2, we show a class of students and a collection of colours. Both of them are
concrete objects that are built starting from the abstract notion of a set.

Figure 2. Two examples of a set in real objects: a class of students (left), and a collection of

colours contained in a plastic glass (right). Left picture by Uri Tours, source:
https://www.flickr.com/photos/northkoreatravel/10682515504/. Right picture by Mikel Seijas

Alonso, source: https://www.flickr.com/photos/xumet/2670267503/.

https://comp-think.github.io/book/04.pdf
https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://www.flickr.com/photos/northkoreatravel/10682515504/
https://www.flickr.com/photos/xumet/2670267503/

In Python, a new set can be instantiated using the constructor set() . For instance,
my_first_set = set() will create an empty set and associates it to the variable
my_first_set .

We can execute several operations on sets, in particular:

● we use the method <set>.add(<element>) for adding a new element to the set – for
instance, my_first_set.add(34) and my_first_set.add(15) will add the
numbers 34 and 15 to the set – it is worth mentioning that adding an element already
included in the set does not add it again;

● we use the method <set>.remove(<element>) for removing an element from the
set – for instance, my_first_set.remove(34) will remove the number 34, obtaining
a set with just the element 15 included in it;

● we use the method <set>.update(<another_set>) for adding all the elements
included in <another_set> to the current set – for instance, if we have the set
my_second_set containing the numbers 1 and 15,
my_first_set.update(my_second_set) will add just 1 to the current set, since 15
was already present.

my_first_set = set() # this creates a new set

my_first_set.add(34) # these two lines add two numbers

my_first_set.add(15) # to the set without any particular order

currently my_first_set contains two elements:

set({ 34, 15 })

my_first_set.add("Silvio") # a set can contains element of any kind

now my_first_set contains:

set({34, 15, "Silvio"})

my_first_set.remove(34) # it removes the number 34

my_first_set became:

set({15, "Silvio"})

it doesn't add the new elements since they are already included

my_first_set.update(my_first_set)

current status of my_first_set:

set({15, "Silvio"})

my_first_set_len = len(my_first_set) # it stores 2 in

my_first_set_len

Listing 1. How Python allows us to create and handle sets – with numbers and strings. The
source code of this listing is available as part of the material of the course.

http://comp-think.github.io/python/set_instructions.py

In Listing 1, we show some examples of the use of sets in Python. As in the examples of the
previous chapter, we describe with natural language comments the various aspects related to
the creation and modification of sets.

Dictionaries
A dictionary is a countable collection of unordered key-value pairs, where the key is
non-repeatable in the dictionary. It is countable because we can use the built-in function len()
for counting the elements it contains. Its elements are unordered because the order of the
insertion operations does not provide any cardinality relation among such elements, similar to
sets. Finally, the keys of its pairs are not repeatable because the same key cannot be used
twice in the dictionary.

Of course, there exist several real examples of such abstract dictionaries in real-life objects. For
instance, in Figure 3, we show a collection of definitions and a currency exchange table. Both of
them are concrete objects that are built starting from the abstract notion of a dictionary.

Figure 3. Two examples of a dictionary in real objects: a collection of definitions (top), and a

conversion table from 1 euro to the amount in the other nine different currencies (bottom). Top
picture by Doug Belshaw, source: https://www.flickr.com/photos/dougbelshaw/6877298592/.

Bottom screenshot from http://www.xe.com/it/.

https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Associative_array
https://www.flickr.com/photos/dougbelshaw/6877298592/
http://www.xe.com/it/

my_first_dict = dict() # this creates a new dictionary

these following two lines add two pairs to the dictionary

my_first_dict["age"] = 34

my_first_dict["day of birth"] = 15

currently my_first_dict contains two elements:

dict({ "age": 34, "day of birth": 15 })

a dictionary can contains even key-value pairs of different types

my_first_dict["name"] = "Silvio"

now my_first_dict contains:

dict({"age": 34, "day of birth": 15, "name": "Silvio"})

del my_first_dict["age"] # it removes the pair with key "age"

my_first_dict became:

dict({"day of birth": 15, "name": "Silvio"})

my_first_dict.get("age") # get the value associated to "age"

the returned result will be None in this case

the following lines create a new dictionary with two pairs

my_second_dict = dict()

my_second_dict["month of birth"] = 12

my_second_dict["day of birth"] = 28

it adds a new pair to the current dictionary, and rewrite the value

associated to the key "day of birth" with the one specified

my_first_dict.update(my_second_dict)

current status of my_first_dict:

dict({"day of birth": 28, "name": "Silvio", "month of birth": 12})

it stores 3 in my_first_dict_len

my_first_dict_len = len(my_first_dict)

Listing 2. How Python allows us to create and handle dictionaries – with numbers and strings
as keys and values of pairs. The source code of this listing is available as part of the material of

the course.

In Python, a new dictionary can be instantiated using the constructor dict() . For instance,
my_first_dict = dict() will create an empty dictionary and associates it to the variable
my_first_dict .

We can execute several operations on dictionaries, in particular:

http://comp-think.github.io/python/dictionary_instructions.py
http://comp-think.github.io/python/dictionary_instructions.py

● we use the operation <dictionary>[<key>] = <value> for adding a new pair to
the dictionary – for instance, my_first_dictionary["age"] = 34 and
my_first_dictionary["day of birth"] = 15 will add the pairs "age": 34
and "day of birth": 15 to the dictionary – it is worth mentioning that (a) keys must
be either strings, numbers, or tuples, and (b) adding a pair with a key that is already
included in the dictionary will overwrite the previously-defined pair;

● we use the operation del <dictionary>[<key>] for removing the pair identified by
the specified key from the dictionary – for instance, del

my_first_dictionary["age"] will remove the pair "age": 34 , obtaining, thus, a
dictionary with just the pair "day of birth": 15 ;

● we use the method <dictionary>.get(<key>) for getting the value associated to
the pair having the specified key in the dictionary – for instance,
my_first_dictionary.get("day of birth") will return the number 15, while
my_first_dictionary.get("name") will return None since no pairs in the
dictionary include the specified key;

● we use the method <dictionary>.update(<another_dictionary>) for adding
all the pairs included in <another_dictionary> to the current dictionary – for
instance, if we have the dictionary my_second_dictionary containing the pairs
"month of birth": 12 and "day of birth": 28 ,
my_first_dictionary.update(my_second_dictionary) will add the pairs
"month of birth": 12 to the current dictionary, while the pair "day of birth":

15 will be rewritten with "day of birth": 28 .

In Listing 2, we show some examples of the use of dictionaries in Python. In particular, we
introduce the effect of using all the operations mentioned above.

Exercises
1. Write a code in Python to create a set of the following elements: " Bilbo" , " Frodo" ,

" Sam" , " Pippin" , " Merry" .
2. Consider the set created in the first exercise, stored in the variable my_set . Describe

the status of my_set after the execution of each of the following operations:
my_set.remove("Bilbo") , my_set.add("Galadriel") ,
my_set.update(set({"Saruman", "Frodo", "Gandalf"})) .

3. Suppose to organise some of the elements in the set returned by the second exercise in
two different sets: set_hobbit that refers to the set set({"Frodo", "Sam",

"Pippin", "Merry"}) , and set_magician defined as set({"Saruman",

"Gandalf"}) . Create a dictionary containing two pairs: one that associates the set of
hobbits with the key "hobbit" , and the other that associates the set of magicians with
the key "magician" .

Acknowledgements
The author wants to thank some of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna – i.e. Delfina Sol Martinez Pandiani, Eleonora
Peruch, and Mattia Spadoni – for having suggested corrections and improvements to the text of
this chapter.

References
Borges, J. L. (1941). La biblioteca de Babel. In El Jardín de senderos que se bifurcan. Editorial
Sur. English translation available at
https://sites.evergreen.edu/politicalshakespeares/wp-content/uploads/sites/226/2015/12/Borges-
The-Library-of-Babel.pdf

Foulds, J. (2017). Answer to the question "Is the Library of Babel infinite?". Quora.
https://www.quora.com/Is-the-Library-of-Babel-infinite (last visited 16 November 2017)

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/delfimpandiani
https://github.com/EleonoraPeruch
https://github.com/EleonoraPeruch
https://github.com/MattiaSpadoni
https://sites.evergreen.edu/politicalshakespeares/wp-content/uploads/sites/226/2015/12/Borges-The-Library-of-Babel.pdf
https://sites.evergreen.edu/politicalshakespeares/wp-content/uploads/sites/226/2015/12/Borges-The-Library-of-Babel.pdf
https://www.quora.com/Is-the-Library-of-Babel-infinite

