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Abstract 
This chapter introduces the main concepts related to some of the most important data structures               
for creating and handling sets and dictionaries. The historic hero introduced in these notes is               
Jorge Luis Borges, considered one of the most famous Argentinian writers of the past century.               
Among his vast work, he wrote several short stories focussed on the exploration of              
mathematical concepts and limits. 

Historic hero: Jorge Luis Borges 
Jorge Luis Borges, shown in Figure 1, was an Argentine short-story writer, poet, and essayist,               
who produce several works laying between philosophical literature and fantasy genre. In his             
short novels, he explored several aspects and situations related to dreams, labyrinths, libraries,             
mirrors, the notion of infinity, and religions, among others. 
 
One of his most known stories is entitled The Library of Babel [Borges, 1941]. In this short                 
piece, he describes an incredibly big library, made of hexagonal rooms. In four of the walls of                 
each room, there were 20 bookshelves (5 bookshelves for each wall). Each bookshelf contained              
35 books. Each book counted precisely 410 pages of 40 lines each, and each line contained                
precisely 80 characters. From one of the two empty walls, one could access to a hallway with                 
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two small rooms (one where to sleep standing up, the other with a bathroom) and to the stairs to                   
get to higher hexagonal rooms. The whole library contained all the books ever written by using                
every possible combination of 25 characters: 22 letters, the period, the comma, and the space.               
Of course, the main parts of the books contained a nonsense sequence of characters, while               
others (or even limited parts of them) were, indeed, describing situations using an intelligible              
language. However, even between those, some books negated the statements of the others             
explicitly. Thus, the narrator suggested that we are in the presence of all the possible written                
books. Books that, even when they make sense, are useless because they describe any likely               
fact from all the possible perspectives. Thus, there is no absolute truth available, and all the                
possibilities are possible. 
 

 
Figure 1. A picture of Jorge Luis Borges at L'Hôtel in Paris. Source: 

https://commons.wikimedia.org/wiki/File:Jorge_Luis_Borges_Hotel.jpg. 
 
The opening sentence is of particular interest: “[the Library] is composed of an indefinite and               
perhaps infinite number of hexagonal galleries”. In this passage, the narrator suggests that             
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there is an infinite number of books in the library, contained in an infinite number of rooms.                 
However, is this the case? 
 
Understanding infinity is a matter of personal perception of things. Often we use to refer to an                 
infinite amount of something (time, space, etc.) when we are speaking about a huge mass of                
stuff. Stuff that is delimited by some physical or social constraints. The Library of Babel falls in                 
these kinds of situation. Even if the narrator says explicitly that the library is infinite, actually it                 
can contain only 2⋅101834097 of books [Foulds, 2017]. We can obtain the previous number by               
considering all the possible combination of all the finite set of characters. Characters that can               
appear in all the 40 pages in all the books the library contains. And this number exists, even if it                    
is so big that is not manageable by our mind and, thus, we tend to identify it to infinity, while it is                      
not. As a support to this non-infinity, someone has also tried to implement the Library as a                 
digital space. 
 
Of course, mathematical infinity exists, as an abstract concept – e.g. think about the set of all                 
the prime numbers, which is an infinite set. However, a computer is physically limited in space                
and has a limited set of resources. Thus, a computer can only approximate the concept of                
infinity. For instance, we can implement an algorithm that runs forever in a specific programming               
language. However, if we ask an electronic computer to run it we will see that it may stop                  
anyway due to some external reasons: a blackout, the breaking of some hardware necessary              
for the correct execution of its processes, etc. 
 
Considering the applications and implementations of computational systems, we must be aware            
that infinity (e.g. the infinite tape of a Turing Machine, the endless execution of an algorithm,                
etc.) is an illusion. It is just a theoretical tool which allows us to sketch out possible borders for                   
real-world problems. 

A clarification: classes and methods in Python 
In programming languages, classes are extensible templates for creating objects having a            
specific type. In practice, all the values (e.g. numbers and strings) and other entities (e.g. lists                
and stacks) we create are objects of a specific class. The creation of objects of a specified kind                  
is possible by calling a constructor, i.e. a particular function (e.g. list() for lists) which creates                
a new object of that class. 
 
The advantage of organising all these types of values as classes is that each object made                
available a set of methods that allow one to interact with the object itself. A method is a                  
particular kind of function that can be run only if directly called via an object. Their fingertips is                  
structured as follows: <object>.<method>(<param_1>, <param_2>, ...) . For       
instance, methods of the class list define all the operations we have introduced for manipulating               
lists, e.g. <list>.append(<item>) , <list>.remove(<item>) , etc. 
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It is possible to create our classes and methods. However, this topic goes beyond the actual                
scope of this book. If interested in understanding how to create these items, please refer to the                 
documentation provided in the chapter "Programming languages". 

Unordered structures 
In this chapter, we will introduce two specific data structures, that are discussed in detail in the                 
following sections, i.e. sets and dictionaries. They are among the most basic and used data               
structures in algorithms (and, more concretely, in programs). They do not specify any order for               
their elements. Finally, they do not allow repetitions – i.e. the same value cannot be specified                
twice. 

Sets 
A set is a countable collection of unordered and non-repeatable elements. It is countable              
because we can use the built-in function len() (introduced some chapters ago, when we              
talked about lists) for counting the elements it contains. Its elements are unordered because the               
order of the insertion operations does not provide any cardinality relation among such elements.              
Finally, its elements are not repeatable because the same value cannot be included twice in the                
set. 
 
Of course, there exist several real examples of such abstract sets in real-life objects. For               
instance, in Figure 2, we show a class of students and a collection of colours. Both of them are                   
concrete objects that are built starting from the abstract notion of a set. 
 

 
Figure 2. Two examples of a set in real objects: a class of students (left), and a collection of 

colours contained in a plastic glass (right). Left picture by Uri Tours, source: 
https://www.flickr.com/photos/northkoreatravel/10682515504/. Right picture by Mikel Seijas 

Alonso, source: https://www.flickr.com/photos/xumet/2670267503/. 
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In Python, a new set can be instantiated using the constructor set() . For instance,              
my_first_set = set() will create an empty set and associates it to the variable              
my_first_set .  
 
We can execute several operations on sets, in particular: 
 

● we use the method <set>.add(<element>) for adding a new element to the set – for               
instance, my_first_set.add(34) and my_first_set.add(15) will add the       
numbers 34 and 15 to the set – it is worth mentioning that adding an element already                 
included in the set does not add it again; 

● we use the method <set>.remove(<element>) for removing an element from the           
set – for instance, my_first_set.remove(34) will remove the number 34, obtaining           
a set with just the element 15 included in it; 

● we use the method <set>.update(<another_set>) for adding all the elements          
included in <another_set> to the current set – for instance, if we have the set               
my_second_set containing the numbers 1 and 15,       
my_first_set.update(my_second_set) will add just 1 to the current set, since 15           
was already present. 

 
my_first_set = set()  # this creates a new set 

 

my_first_set.add(34)  # these two lines add two numbers 

my_first_set.add(15)  # to the set without any particular order 

# currently my_first_set contains two elements: 

# set({ 34, 15 }) 

 

my_first_set.add("Silvio")  # a set can contains element of any kind 

# now my_first_set contains: 

# set({34, 15, "Silvio"}) 

 

my_first_set.remove(34)  # it removes the number 34 

# my_first_set became: 

# set({15, "Silvio"}) 

 

# it doesn't add the new elements since they are already included 

my_first_set.update(my_first_set)  

# current status of my_first_set: 

# set({15, "Silvio"}) 

 

my_first_set_len = len(my_first_set) # it stores 2 in 

my_first_set_len 

Listing 1. How Python allows us to create and handle sets – with numbers and strings. The 
source code of this listing is available as part of the material of the course. 

http://comp-think.github.io/python/set_instructions.py


 

 
In Listing 1, we show some examples of the use of sets in Python. As in the examples of the                    
previous chapter, we describe with natural language comments the various aspects related to             
the creation and modification of sets. 

Dictionaries 
A dictionary is a countable collection of unordered key-value pairs, where the key is              
non-repeatable in the dictionary. It is countable because we can use the built-in function len()               
for counting the elements it contains. Its elements are unordered because the order of the               
insertion operations does not provide any cardinality relation among such elements, similar to             
sets. Finally, the keys of its pairs are not repeatable because the same key cannot be used                 
twice in the dictionary. 
 
Of course, there exist several real examples of such abstract dictionaries in real-life objects. For               
instance, in Figure 3, we show a collection of definitions and a currency exchange table. Both of                 
them are concrete objects that are built starting from the abstract notion of a dictionary. 
 

 
Figure 3. Two examples of a dictionary in real objects: a collection of definitions (top), and a 

conversion table from 1 euro to the amount in the other nine different currencies (bottom). Top 
picture by Doug Belshaw, source: https://www.flickr.com/photos/dougbelshaw/6877298592/. 

Bottom screenshot from http://www.xe.com/it/. 
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my_first_dict = dict()  # this creates a new dictionary 

 

# these following two lines add two pairs to the dictionary 

my_first_dict["age"] = 34 

my_first_dict["day of birth"] = 15 

# currently my_first_dict contains two elements: 

# dict({ "age": 34, "day of birth": 15 }) 

 

# a dictionary can contains even key-value pairs of different types 

my_first_dict["name"] = "Silvio" 

# now my_first_dict contains: 

# dict({"age": 34, "day of birth": 15, "name": "Silvio"}) 

 

del my_first_dict["age"]  # it removes the pair with key "age" 

# my_first_dict became: 

# dict({"day of birth": 15, "name": "Silvio"}) 

 

my_first_dict.get("age")  # get the value associated to "age" 

# the returned result will be None in this case 

 

# the following lines create a new dictionary with two pairs 

my_second_dict = dict() 

my_second_dict["month of birth"] = 12 

my_second_dict["day of birth"] = 28 

 

# it adds a new pair to the current dictionary, and rewrite the value 

# associated to the key "day of birth" with the one specified 

my_first_dict.update(my_second_dict) 

# current status of my_first_dict: 

# dict({"day of birth": 28, "name": "Silvio", "month of birth": 12}) 

 

# it stores 3 in my_first_dict_len 

my_first_dict_len = len(my_first_dict) 

Listing 2. How Python allows us to create and handle dictionaries – with numbers and strings 
as keys and values of pairs. The source code of this listing is available as part of the material of 

the course. 
 
In Python, a new dictionary can be instantiated using the constructor dict() . For instance,              
my_first_dict = dict() will create an empty dictionary and associates it to the variable              
my_first_dict .  
 
We can execute several operations on dictionaries, in particular: 

http://comp-think.github.io/python/dictionary_instructions.py
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● we use the operation <dictionary>[<key>] = <value> for adding a new pair to             
the dictionary – for instance, my_first_dictionary["age"] = 34 and         
my_first_dictionary["day of birth"] = 15 will add the pairs "age": 34           
and "day of birth": 15 to the dictionary – it is worth mentioning that (a) keys must                 
be either strings, numbers, or tuples, and (b) adding a pair with a key that is already                 
included in the dictionary will overwrite the previously-defined pair; 

● we use the operation del <dictionary>[<key>] for removing the pair identified by            
the specified key from the dictionary – for instance, del          

my_first_dictionary["age"] will remove the pair "age": 34 , obtaining, thus, a          
dictionary with just the pair "day of birth": 15 ; 

● we use the method <dictionary>.get(<key>) for getting the value associated to           
the pair having the specified key in the dictionary – for instance,            
my_first_dictionary.get("day of birth") will return the number 15, while         
my_first_dictionary.get("name") will return None since no pairs in the         
dictionary include the specified key; 

● we use the method <dictionary>.update(<another_dictionary>) for adding       
all the pairs included in <another_dictionary> to the current dictionary – for            
instance, if we have the dictionary my_second_dictionary containing the pairs          
"month of birth": 12 and "day of birth": 28 ,         
my_first_dictionary.update(my_second_dictionary) will add the pairs     
"month of birth": 12 to the current dictionary, while the pair "day of birth":              

15  will be rewritten with "day of birth": 28 . 
 
In Listing 2, we show some examples of the use of dictionaries in Python. In particular, we                 
introduce the effect of using all the operations mentioned above. 

Exercises 
1. Write a code in Python to create a set of the following elements: " Bilbo" , " Frodo" ,               

" Sam" , " Pippin" , " Merry" . 
2. Consider the set created in the first exercise, stored in the variable my_set . Describe              

the status of my_set after the execution of each of the following operations:             
my_set.remove("Bilbo") , my_set.add("Galadriel") ,  
my_set.update(set({"Saruman", "Frodo", "Gandalf"})) . 

3. Suppose to organise some of the elements in the set returned by the second exercise in                
two different sets: set_hobbit that refers to the set set({"Frodo", "Sam",           

"Pippin", "Merry"}) , and set_magician defined as set({"Saruman",       

"Gandalf"}) . Create a dictionary containing two pairs: one that associates the set of             
hobbits with the key "hobbit" , and the other that associates the set of magicians with               
the key "magician" . 
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