
Recursion
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Douglas Hofstadter; Little harmonic labyrinth; Recursive functions; Self-reference

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces one of the main concepts related to Computational Thinking, i.e. the
recursion. The historic hero introduced in these notes is Douglas Hofstadter. He is a cognitive
scientist. He wrote one of the best-selling educational books on mathematics, logic and
self-references entitled Gödel, Escher, Bach: An Eternal Golden Braid.

Historic hero: Douglas Hofstadter
Douglas Richard Hofstadter (see Figure 1) is a cognitive scientist. His research focuses
primarily on the concept of self-reference while being also very active in the fields of
consciousness, art, mathematics and physics. He is the author of Gödel, Escher, Bach: An
Eternal Golden Braid (a.k.a. GEB) where he investigated in depth the concept of self-reference
[Hofstadter, 1979]. In 1980, he received the Pulitzer award for that book in the general
nonfiction category.

The book is one of the primary sources of inspiration for choosing to work in the Computer
Science field. While Hofstadter is not a computer scientist, one of the central figures of his book
is a famous logician, i.e. Kurt Gödel. Gödel provided several contributions also related to the
theoretical Computer Science field. In addition to that, since one of the leading book themes
concerns a detailed discussion about the concept of intelligence, the final part of the book
discusses the Artificial Intelligence field.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Douglas_Hofstadter
https://en.wikipedia.org/wiki/Self-reference
https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach
https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/Kurt_G%C3%B6del
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence

Figure 1. Douglas Hofstadter in 2002. Picture by Maurizio Codogno, source:

https://commons.wikimedia.org/wiki/File:Hofstadter2002.jpg.

Self-reference
The structure of GEB is an alternation of fictional dialogues and several puzzles. The dialogues
are functional to the various topics introduced in the book chapters. The puzzles enable the
author to explain the critical behaviour of formal mathematics using easy-listening examples.
One of the dialogues is of great interest for this chapter, i.e. the Little Harmonic Labyrinth. In this
dialogue, the two main characters, i.e. Achilles and the Tortoise, are living a series of
adventures in various worlds starting from the inconsistent composite world described in the
Convex and Concave lithograph by Maurits Cornelis Escher. In particular, by using two specific

https://commons.wikimedia.org/wiki/File:Hofstadter2002.jpg
https://genius.com/Douglas-hofstadter-little-harmonic-labyrinth-annotated
https://genius.com/Douglas-hofstadter-little-harmonic-labyrinth-annotated
https://en.wikipedia.org/wiki/Convex_and_Concave
https://en.wikipedia.org/wiki/M._C._Escher

drinks, i.e. the pushing-potion and the popping-tonic, one can enter into a world depicted in an
oil painting or any other printed picture and exit from that world, respectively.

One can use these pushing and popping operations within any world. Once entered into the
world described in the Convex and Concave lithograph, one can drink another pushing-potion to
get into another world depicted by another painting. In this case, though, one needs to drink the
popping-tonic twice to come back to the real world. One can start to be lost by doing these
pushing and popping operations several times. In fact, one could be not entirely sure if the world
from which she thinks the journey started is actually the real world, since she could have come
from another world (and just forgotten about it), and so on. Several stories in the past addressed
this specific theme of a journey in a stack of worlds, e.g. in Christopher Nolan's 2010 movie
entitled Inception.

During the journey in several worlds, Achilles and the Tortoise narrate (or are part of) a lot of
stories. These stories include citations and references as well as self-citations and
self-references that entangle and even change the whole narrative structure of the dialogue
several times. One of the situations that occur concerns the use, by Achilles, of a magic lamp
that allows one to evoke a genie. After rubbing it, a genie appears, and Achilles asks him, as the
first wish, the possibility of having one hundred wishes instead of the usual three. The genie
answers that he is not able to grant any meta-wish (i.e. a wish about a wish). However, the
genie tries to propose a solution to that request by evoking a new meta-genie from his
meta-lamp. Then, the genie asks if the meta-genie and, as a consequence, GOD (i.e. an
acronym for GOD Over Djinn, where the word Djinn is used to designate all the possible genies
and meta-genies that can exist) could enable Achilles to ask for a meta-wish. The meta-genie
takes his meta-meta-lamp to evoke the meta-meta-genie to answer to the genie's request. Then
the meta-genie asks the meta-meta-genie the very same permission, and so on. Once, in the
end, Achilles is granted with the consent of asking for a meta-wish, he wishes that his wish
would not be allowed.

This story contains several pieces of evidence of very well-known, and delicate, aspects of
mathematics and logic. For instance, the acronym GOD used in the story is a recursive
acronym. It means that the definition of the acronym contains the acronym itself, thus creating
an infinite sequence of acronym rewriting if one tries to disentangle it. For instance, GOD
becomes GOD Over Djinn, that becomes GOD Over Djinn Over Djinn, that becomes GOD Over
Djinn Over Djinn Over Djinn, and so on. Also, the wish asked by Achilles contains a strange
situation: it concerns the denial of the wish itself. This request creates a paradox through a
self-reference, i.e. the situation where something (e.g. a sentence or formula) refers to itself.

It is worth mentioning that these kinds of self-references may occur in any natural or formal
language. For instance, the (meta-)sentence “this sentence is false” is an example of such a
paradoxical situation. Even graphical languages can describe conditions which include
self-references. For instance, in Escher lithograph shown in Figure 2, there are two hands that
are drawing each other. This situation creates a paradox. However, this paradox is just apparent

https://en.wikipedia.org/wiki/Christopher_Nolan
https://en.wikipedia.org/wiki/Christopher_Nolan
https://en.wikipedia.org/wiki/Inception
https://en.wikipedia.org/wiki/Inception
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Self-reference
https://en.wikipedia.org/wiki/Self-reference

since it exists only in the world depicted by the litograph. In the real world, there is no paradox
since Escher created the lithograph. The take-away message is to behave of self-references.
They are powerful tools, but they can also lead to inconsistencies if they are not appropriately
tamed.

Figure 2. Escher's lithograph entitled Drawing hands. Source:

https://en.wikipedia.org/wiki/File:DrawingHands.jpg.

Recursion
Generally speaking, we have a recursion when something is defined in terms of itself or of its
type – i.e. when its definition contains a self-reference. We use recursion effectively in different
academic fields, such as cognitive sciences, linguistics, logic, mathematics, physics, and
computer science. In this section, we show some well-known adoption of recursion.

In the cognitive science domain, for instance, the study of self-awareness involves recursion by
definition. The goal of this cognitive aspect concerns the ability to recognise ourselves as
individuals separate from the environment and other individuals. Thus, it is an activity that
involves us in studying how ourself appear in the situation we live in. The concept of
self-consciousness is closely related to the activity mentioned above. Self-consciousness
concerns the recognition of our existence as cognitive agents. These merely philosophical
aspects have been explored extensively even in creative works, such as in comics (e.g.
Masamune Shirow's Ghost in the Shell) and movies (e.g. Ridley Scott's Blade Runner).

The formal grammars introduced in the very first chapter can contain examples of recursive
rules as well. Actually, recursive rules are quite typical in the intended formal grammar of
programming languages. For instance, consider that we need to specify the formal grammar for

https://en.wikipedia.org/wiki/File:DrawingHands.jpg
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Self-awareness
https://en.wikipedia.org/wiki/Self-awareness
https://en.wikipedia.org/wiki/Self-consciousness
https://en.wikipedia.org/wiki/Ghost_in_the_Shell_(manga)
https://en.wikipedia.org/wiki/Ghost_in_the_Shell_(manga)
https://en.wikipedia.org/wiki/Blade_Runner
https://en.wikipedia.org/wiki/Blade_Runner

handling all the boolean operations and , or and not , as introduced in the second chapter. A
reasonable formal grammar is the following one:

1) <boolean_exp> ::= "(" "not" <boolean_exp> ")"
2) <boolean_exp> ::= "(" <boolean_exp> "or" <boolean_exp> ")"

3) <boolean_exp> ::= "(" <boolean_exp> "and" <boolean_exp> ")"

4) <boolean_exp> ::= "True"

5) <boolean_exp> ::= "False"

The non-terminal symbol <boolean_exp> is used in the left-side and right-side of three rules,
in a recursive way, for defining all the possible combinations of the boolean operation that can
lead to a boolean expression. By using the aforementioned grammar, it is possible, for instance,
to create complex boolean expressions like (((True and (not False)) or False)

and True) . In fact, they are actually obtained by using the rules specified as follows:

<boolean_exp>

--3--> (<boolean_exp> and <boolean_exp>)

--4--> (<boolean_exp> and True)

--2--> ((<boolean_exp> or <boolean_exp>) and True)

--5--> ((<boolean_exp> or False) and True)

--3--> (((<boolean_exp> and <boolean_exp>) or False) and True)

--4--> (((True and <boolean_exp>) or False) and True)

--1--> (((True and (not <boolean_exp>)) or False) and True)

--5--> (((True and (not False)) or False) and True)

Even Noam Chomsky argued that recursion is a specific ability and essential property of human
language. For instance, each sentence can be a composition of a subject, a verb, and another
sentence as objective part, as shown by the following formal grammar:

1) <sentence> ::= <subj> <verb> <sentence>

2) <sentence> ::= <subj> <verb> "books"

3) <subj> ::= "Alice"

4) <subj> ::= "Bob"

5) <subj> ::= "Christine"
6) <verb> ::= "thinks"

7) <verb> ::= "said"

8) <verb> ::= "read"

According to the aforementioned rules, and in particular the first one that allows us to build a
sequence of linked sentences, it would be possible to write a composite sentence like “Alice
thinks that Bob said that Christine read books”. This is possible by applying the aforementioned
rules as follows:

https://en.wikipedia.org/wiki/Recursion#In_language
https://en.wikipedia.org/wiki/Recursion#In_language

<sentence>

--1--> <subj> <verb> <sentence>

--3--> Alice <verb> <sentence>

--6--> Alice thinks <sentence>

--1--> Alice thinks <subj> <verb> <sentence>

--4--> Alice thinks Bob <verb> <sentence>

--7--> Alice thinks Bob said <sentence>

--2--> Alice thinks Bob said <subj> <verb> books

--5--> Alice thinks Bob said Christine <verb> books

--8--> Alice thinks Bob said Christine read books

We can find similar recursive situations in physics. Such situations concern well-known
scenarios that can happen in our daily life, such as those introduced in Figure 3. In particular,
the left picture shows a situation known as the infinity mirror, created by positioning two mirrors,
one in front of the other, to reflect an image indefinitely. On the other hand, the right picture is
portraying Jimi Hendrix, who mastered the use of the Larsen effect. A Larsen effect happens
when an audio output device (e.g. e speaker) amplifies an audio signal received by an audio
input device (e.g. the guitar pickup). That amplified signal is then received again by the input
device, and so forth, to create an audio loop.

Figure 3. Two examples of recursion in real-life situations: the infinite mirror (left) and the

Larsen effect (right). Left picture by Elsemuko, source:
https://en.wikipedia.org/wiki/File:Infinity_Mirror_Effect.jpg. Right picture source:

https://en.wikipedia.org/wiki/File:Jimi_Hendrix_1967_uncropped.jpg.

Recursive functions
As anticipated in the previous section, the recursion is used (quite extensively) also in Computer
Science, and it represents, technically speaking, an alternative to the iteration. In practice,

https://en.wikipedia.org/wiki/Infinity_mirror
https://en.wikipedia.org/wiki/Audio_feedback
https://en.wikipedia.org/wiki/Audio_feedback
https://en.wikipedia.org/wiki/File:Infinity_Mirror_Effect.jpg
https://en.wikipedia.org/wiki/File:Jimi_Hendrix_1967_uncropped.jpg
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Recursion_(computer_science)

recursion is useful when a solution to a particular computational problem depends on the partial
solutions of smaller instances of the same problem. Computer scientists have developed some
approaches to tame recursion to avoid infinite loops, and thus to use it within algorithms. have 1

developed some approaches to tame recursion so as to avoid infinite loops, and thus to use it
within algorithms.

In practice, an algorithm has a recursive behaviour when it has one or more basic cases and at
least one recursive step. Each basic case describes a terminating scenario and does not use
any recursion to produce the answer to a specific (sub-)problem. Instead, the recursion step is
where the same algorithm is executed again with a different (and, usually, reduced) input.
Listing 1 shows the generic skeleton of a recursive algorithm with one basic condition and one
recursive step.

def <function>(<param_1>, <param_2>, ...):

 if <base_case_condition>:

 # do something and then…

 return <value>

 else:

 # do something and then… execute the recursive step

 result = <function>(<param_a>, <param_b>, ...)

 # the result of the recursive step is combined

 # somehow with other information, and then…

 return <value> # resulting from the use of recursion

Listing 1. The general structure of a recursive algorithm implemented as a Python function.

It is worth mentioning that the basic case is crucial for allowing the algorithm to stop a certain
point. Usually, avoiding the basic case means to create an algorithm that runs forever. For
instance, in Listing 2, there is a recursive implementation of the run_forever function we have
shown in one previous chapter. The only thing that such a recursive algorithm does is to call
itself again, thus creating a loop of calls that never ends.

def run_forever_recursive():

 run_forever_recursive()

Listing 2. A function that never stops created using only a recursion step. We do not use any
basic case in this example, that is usually a sign that the recursive algorithm does not stop. The

source code of this listing is available as part of the material of the course.

An example of a simple and complete (basic case + recursive step) recursive algorithm that
solves a particular computational problem is that of the multiplication operation. In particular, the

1 The activity of taming something like recursion and other computational approaches has been often
used as main characteristic to recognise computer scientists as wizards by the general audience [Tyler,
2013].

http://comp-think.github.io/python/run_forever_recursive.py

multiplication of two integers can be defined as the sum of the first number with itself as many
times as indicated by the other number, e.g.: 3 ⋅ 4 = 3 + 3 + 3 + 3. However, looking carefully at
the behaviour of this operation, one can also decouple it in terms of a sequence of
multiplications summed with each other. In fact n1 ⋅ n2 = n1 + (n1 ⋅ (n2 - 1)) and, by applying the
same rule, we can then say that n1 + (n1 ⋅ (n2 - 1)) = n1 + (n1 + (n1 ⋅ ((n2 - 1) - 1))), and so forth
until we do not multiply the first number by 0, which is the basic case. For instance, 3 ⋅ 4 can be
rewritten as follows by means of the aforementioned rule: 3 ⋅ 4 = 3 + (3 ⋅ 3) = 3 + (3 + (3 ⋅ 2)) =
3 + (3 + (3 + (3 ⋅ 1))) = 3 + (3 + (3 + (3 + (3 ⋅ 0)))) = 3 + 3 + 3 + 3 + 0 = 12. This mechanism for
defining the multiplication is entirely based on a recursive approach, which is illustrated in
Listing 3.

Test case for the algorithm

def test_multiplication(int_1, int_2, expected):

 result = multiplication(int_1, int_2)

 if expected == result:

 return True

 else:

 return False

Code of the algorithm

def multiplication(int_1, int_2):

 if int_2 == 0:

 return 0

 else:

 return int_1 + multiplication(int_1, int_2 - 1)

print(test_multiplication(0, 0, 0))

print(test_multiplication(1, 0, 0))

print(test_multiplication(5, 7, 35))

Listing 3. A recursive function for calculating the multiplication between two non-negative
integers, accompanied by the related test case. The source code of this listing is available as

part of the material of the course.

Exercises
1. Define a recursive function def exponentiation(base_number, exponent) for

implementing the exponentiation operation. Test (by implementing the related test case)
it on the following inputs: 34, 171, and 20.

2. Define a recursive function def fib(n) that implements the algorithm to find the nth
Fibonacci number. In particular, if n is less than or equal to 0, then 0 is returned as a

http://comp-think.github.io/python/multiplication.py
http://comp-think.github.io/python/multiplication.py

result. Otherwise, if n is equal to 1, then 1 is returned. Otherwise, return the sum of the
same function called with n-1 and n-2 as input. Please accompany the function with
the related test case.

Acknowledgements
The author wants to thank a student of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna – i.e. Severin Josef Burg – for having
suggested corrections and improvements to the text of this chapter.

References
Hofstadter, D. R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books. ISBN:
0-465-02656-7, also available at https://www.physixfan.com/wp-content/files/GEBen.pdf

Tyler, J. (2013). The magic of coding: Why programmers are the modern-day wizards. Medium.
https://medium.com/@joshuatyler/the-magic-of-coding-30e58ce31032 (last visited 20 November
2017)

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/SeverinJB
https://www.physixfan.com/wp-content/files/GEBen.pdf
https://medium.com/@joshuatyler/the-magic-of-coding-30e58ce31032

