
Divide and conquer algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Divide and conquer; John von Neumann; Merge sort; Mutable and immutable values

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the notion of divide and conquer algorithms with the implementation of
one algorithm of this kind: merge sort. The historic hero introduced in these notes is John von
Neumann. He proposed a set of guidelines for the designing of the EDVAC named after him.
These guidelines have been fundamental design principles for building the first electronic
computers.

Historic hero: John von Neumann
John von Neumann (depicted in Figure 1) was a computer scientist, mathematician, and
physicist. He was very active in all these disciplines. He made an incredibly huge number of
contributions in several fields, such as quantum mechanics, game theory, and self-replicating
machines.

One of his most important and famous contributions in the Computer Science domain was the
digital computer architecture named after him [von Neumann, 1945]. He wrote about it for the
very first time in an incomplete document for defining the main design principles of the
Electronic Discrete Variable Automatic Computer (EDVAC), the binary-based successor of the
ENIAC. The von Neumann's architecture has been used as main guidelines for building several
electronic computers in the following years, and still represent an excellent approximate model
for describing several of the main components of today's digital computers.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Game_theory
https://en.wikipedia.org/wiki/Self-replicating_machine
https://en.wikipedia.org/wiki/Self-replicating_machine
https://en.wikipedia.org/wiki/Self-replicating_machine
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/EDVAC
https://en.wikipedia.org/wiki/EDVAC
https://en.wikipedia.org/wiki/EDVAC
https://en.wikipedia.org/wiki/EDVAC
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/ENIAC

 Figure 1. A picture of John von Neumann at Los Alamos. Source:

https://commons.wikimedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif.

He also made other crucial contributions in Computer Science, such as the merge sort algorithm
we introduce in this chapter. Also, he was one of the people involved in the top-secret Trinity
project and its related parent project, i.e. the Manhattan Project, during World War II.

Clarification: immutable and mutable values
We have introduced the mutability and immutability of Python objects when talking about lists
and tuples. A mutable object (e.g. a list) is an object that can change in time – we can create an
empty list, we can populate it with new values, we can remove some of them, etc. On the other
hand, an immutable object, like a tuple, is that entity that, once it is created, cannot be further
modified. In particular, we can group Python basic types in the following way:

https://commons.wikimedia.org/wiki/File:JohnvonNeumann-LosAlamos.gif
https://en.wikipedia.org/wiki/Trinity_(nuclear_test)
https://en.wikipedia.org/wiki/Trinity_(nuclear_test)
https://en.wikipedia.org/wiki/Trinity_(nuclear_test)
https://en.wikipedia.org/wiki/Trinity_(nuclear_test)
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747

● strings, numbers, booleans, None, and tuples are immutable;
● lists, sets, and dictionaries are mutable.

def add_one(n):

 n = n + 1

 return n

my_num = 41

print(my_num) # 41

result = add_one(my_num)

print(my_num) # 41

print(result) # 42

 Listing 1. Showing the behaviour of immutable values in Python. The source code of this listing
is available as part of the material of the course.

def append_one(lst):

 lst.append(1)

 return lst

my_list = list()

my_list.append(2)

print(my_list) # list([2])

result = append_one(my_list)

print(my_list) # list([2, 1])

print(result) # list([2, 1])

 Listing 2. Showing the behaviour of mutable values in Python. The source code of this listing is
available as part of the material of the course.

This distinction is crucial when we use these kinds of objects as an input of functions or
methods. They are handled in different ways, depending on dealing with mutable or immutable
types. For instance, in the snippet of code in Listing 1, there is a simple function that sums 1 to
the number passed as input and then returns it. However, we are always using the same
variable n for storing the result of the operation before returning it. Since numbers are
immutable, the actual value associated with the original my_num , used as the input of the
execution of the function def add_one(n) , is not modified as a consequence of the execution
of the function. This behaviour is the way (i.e. by value) Python uses to handle immutable
values when passed as input of functions. It means that Python copies the value associated

http://comp-think.github.io/python/immutable_values.py
http://comp-think.github.io/python/mutable_values.py
https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_value

with the variable my_num to the variable which defines the input parameter of the function, i.e.
n , before executing the code of the function itself.

Contrarily, mutable objects work in a slightly different way. In the snippet of code in Listing 2,
Python does not copy the list specified in the variable my_list (a mutable object), used as the
input of the function def append_one(lst) , into the variable defining the input parameter of
the function, i.e. lst . Instead, Python references to it by such input parameter – i.e. both
my_list and lst are referring to the very same list. This behaviour is the way (i.e. by
reference) Python uses to handle mutable values when passed as input of functions.

We have a similar behaviour when we assign immutable and mutable values to a particular
variable, as shown in Listing 3. One can observe how these executions and assignments affect
the related objects by running all the codes in this section usingPython Tutor.

Immutable objects

my_num_1 = 41

my_num_2 = my_num_1

my_num_1 = my_num_1 + 1

print(my_num_1) # 42

print(my_num_2) # 41, since it is a copy of the original value

Mutable objects

my_list_1 = list()

my_list_2 = my_list_1

my_list_1.append(1)

print(my_list_1) # [1]

print(my_list_2) # [1], since it points to the same list

 Listing 3. Showing the behaviour of immutable and mutable values when assigned to variables
in Python. The source code of this listing is available as part of the material of the course.

Ordering billions of books
In one of the previous chapters, we have introduced an algorithm for ordering the items in a list
called insertion sort. It is quite simple – even natural, we could say. This algorithm that works
exceptionally well when the size of the list is small, but it is not very efficient when we have to
deal with an incredibly significant amount of data. This behaviour is due to the brute-force
approach it is implementing. In fact, while rather simple, the mechanism followed by the
insertion sort obliges a computer to scan the list several times for constructing an ordered list
from an unordered one.

However, the insertion sort is not the only algorithm proposed for ordering the items in a list.
Other, rather efficient, approaches have been developed in the past, to perform a better (and

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_reference
https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_reference
http://comp-think.github.io/python/immutable_and_mutable_variables.py

quicker) sorting of list items in a more reasonable time – even for an electronic computer. Some
of these algorithms works if particular pre-conditions hold – such as to specify the number of
buckets for the bucket sort algorithm.

Divide and conquer sorting algorithms are among those that behave efficiently well on large
input lists. Divide and conquer is an algorithmic technique. It splits the original computational
problem to solve in two or more smaller problems of the same type until they became solvable
directly by executing a simple set of operations. Potentially, such smaller problems can be
addressed in parallel by different computers (e.g. humans). Then, the solutions to these
sub-problems are recombined to provide the answer to the original problem. Any divide and
conquer algorithm is based on the recursive call of the very same algorithm, according to the
following (informal) steps:

1. [base case] address the problem directly on the input material if it is depicting an
easy-to-solve problem; otherwise

2. [divide] split the input material into two or more balanced parts, each representing a
sub-problem of the original one;

3. [conquer] run the same algorithm recursively for every balanced part obtained in the
previous step;

4. [combine] reconstruct the final solution of the problem using the partial solutions
obtained from running the algorithms on the smaller parts of the input material.

There are several divide and conquer sorting algorithms. In this chapter, we introduce just one
of these: the merge sort.

Merge sort
John von Neumann proposed the merge sort (or mergesort) algorithm in 1945. It implements a
divide a conquer approach for addressing the following computational problem (that we have
already seen when we have introduced the insertion sort):

Computational problem: sort all the items in a given list.

Unlike the insertion sort, the sorting approach defined by the merge sort is less intuitive. Still, it
is more efficient, even considering an extensive list as input. In particular, the merge sort is a
recursion-based algorithm – like any other divide and conquer approach – and uses another
ancillary algorithm in its body, called merge. This latter algorithm is responsible for combining
two ordered input lists to return a new list which contains all the elements in the input lists
ordered. The following steps illustrate the loop suggested by this algorithm to create such a new
list:

1. consider the first items of both the input lists;

https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/Bucket_sort
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://www.ics.uci.edu/~eppstein/161/960118.html
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Merge_sort

2. remove the lesser item from the related list and append it into the result list
3. if the input list, from where we removed the item, is not empty repeat from 1, otherwise

append all the items of the other input list to the result list.

 Figure 2. The process of merging two ordered lists of books together in a new list having all

books ordered.

In Figure 2, we illustrate the execution of the algorithm merge graphically by using two lists of
books as inputs, i.e. list(["Coraline", "The Graveyard Book"]) and

list(["American Gods", "Good Omens", "Neverwhere"]) respectively. In
particular, the first four steps of the execution start the creation of the output list by comparing
the first items of the input lists at each iteration of the loop. Then, in the 5th step, all the items of
the only non-empty input list are then appended to the output list in the order they appear in the
input list. Finally (step 6), the output list is completed and is returned. Listing 4 shows the
implementation in Python of the merge algorithm.

The merge algorithm is used in the merge sort to reconstruct a solution from two partial ones. In
particular, the steps composing the algorithm can be summarised as follows: 1

1. [base case] if the input list has only one item, return the list as it is; otherwise,

1 Fekete and Morr released a nonverbal definition of the algorithm [Fekete, Morr, 2018b] which is useful to
understand the rationale of its steps. Similarly, Kátai Zoltán and Tóth László directed a Transylvanian folk
ballet which explains the execution of the merge sort algorithm visually.

https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=XaqR3G_NVoo

2. [divide] split the input list into two balanced halves, i.e. containing almost the same
number of items each;

3. [conquer] run recursively the merge sort algorithm on each of the halves obtained in the
previous step;

4. [combine] merge the two ordered lists returned by the previous step by using the
algorithm merge and return the result.

def merge(left_list, right_list):

 result = list()

 # Repeat until both lists have at least one item

 while len(left_list) > 0 and len(right_list) > 0:

 left_item = left_list[0]

 right_item = right_list[0]

 # If the item in left_list is less than the one in

right_list,

 # add the formed to the result and remove it from left_list

 if left_item < right_item:

 result.append(left_item)

 left_list.remove(left_item)

 # Otherwise, the item in right_list is added to the result

and

 # removed from the right_list

 else:

 result.append(right_item)

 right_list.remove(right_item)

 # Add to the result the remaining items from the lists

 result.extend(left_list)

 result.extend(right_list)

 return result

 Listing 4. The ancillary function for merging two ordered lists together. The source code of this
listing is available as part of the material of the course and also includes the related test cases.

In Figure 3, we illustrate the execution of the merge sort algorithm graphically by using one list
of books as inputs, i.e. my_list = list(["The Graveyard Book", "Coraline",

"Good Omens", "Neverwhere", "American Gods"]) . Before introducing the
implementation in Python of the algorithm, it is necessary to clarify some operations that we will
use to create the balanced halves from the input list.

http://comp-think.github.io/python/merge.py

 Figure 3. A graphical execution of the merge sort algorithm, which reuses the merge algorithm
implemented by the function def merge(left_list, right_list) introduced in Listing

4.

Import the function 'merge'

from the module 'merge' (file 'merge.py')

from merge import merge

Code of the algorithm

def merge_sort(input_list):

 input_list_len = len(input_list)

 # base case: the list is returned if it is empty or

 # contain just one element

 if len(input_list) <= 1:

 return input_list

 # recursive case

 else:

 # the floor division of the length, returning the quotient

 # in which the digits after the decimal point are removed

 # (e.g. 7 // 2 = 3)

 mid = input_list_len // 2

 # iterative steps, running the merge_sort on the

 # sublists split by mid

 left = merge_sort(input_list[0:mid])

 right = merge_sort(input_list[mid:input_list_len])

 # merge the two (ordered) lists and return the result

 return merge(left, right)
 Listing 5. The merge sort algorithm implemented in Python. The source code of this listing is

available as part of the material of the course and also includes the related test cases.

The first operation is the floor division between two numbers, i.e. <number_1> //

</number_2> . It works like any common division, except that it returns only the integer part of
the result number discarding the fractional part. For instance, 3 // 2 will be 1 (i.e. 1.5 without
its fractional part), 6 // 2 will be 3 (since its fractional part is 0), and 1 // 4 will be 0 (i.e.
0.25 without its fractional part).

The second operation allows us to create on-the-fly a new list from a selection of the elements
in an input list: <list>[<start_position>:<end_position>] . Basically speaking, this
operation creates a new list containing all the elements in <list> that range from
<start_position> to <end_position> - 1 . For instance, considering the
aforementioned list in my_list , my_list[0:2] returns list(["Coraline", "The

Graveyard Book"]) while my_list[2:5] returns list(["American Gods", "Good

http://comp-think.github.io/python/merge_sort.py

Omens", "Neverwhere"]) . It is worth mentioning that the <list> won't be modified by
such an operation.

Thus, now we have all the ingredients for introducing the Python implementation of the merge
sort algorithm. Listing 5 illustrates the function def merge_sort(input_list) .

Exercises
1. Implement in Python the binary search algorithm – i.e. the recursive function def

binary_search(item, ordered_list, start, end) . It takes an item to
search (i.e. item), an ordered list and a starting and ending positions in the list as input.
It returns the position of item in the list if it is in it, and None otherwise. The binary
search first checks if the middle item of the list between start and end (included) is
equal to item , and returns its position in this case. Otherwise, if the middle item is less
than item , the algorithm continues the search in the part of the list that follows the
middle item. Instead, in case the middle item is greater than item , the algorithms
continues the search in the part of the list that precedes the middle item. Accompany the
implementation of the function with the appropriate test cases. As supporting material,
Fekete and Morr released a nonverbal definition of the algorithm [Fekete, Morr, 2018a]
which is useful to understand the rationale of the binary search steps.

2. Implement in Python the partition algorithm – i.e. the non-recursive function def

partition(input_list, start, end, pivot_position) . It takes a list and
the positions of the first and last elements in the list to consider as inputs. It redistributes
all the elements of a list having position included between start and end on the right of
the pivot value input_list[pivot_position] if they are greater than it, and on its
left otherwise – note: pivot_position must be a value between start and end
(included). Also, the algorithm returns the new position where the pivot value is now
stored. For instance, considering my_list = list(["The Graveyard Book",

"Coraline", "Neverwhere", "Good Omens", "American Gods"]) , the
execution of partition(my_list, 1, 4, 1) changes my_list as follows:
list(["The Graveyard Book", "American Gods", "Coraline",

"Neverwhere", "Good Omens"]) and 2 will be returned (i.e. the new position of
"Coraline"). Note that "The Graveyard Book" has not changed its position in the
previous execution since it was not included between the specified start and end
positions (i.e. 1 and 4 respectively). Accompany the implementation of the function with
the appropriate test cases. As supporting material, Ang recorded a video which is useful
to understand the rationale of the partition steps.

3. Implement in Python the divide and conquer quicksort algorithm – i.e. the recursive def

quicksort(input_list, start, end) . It takes a list and the positions of the first
and last elements in the list to consider as inputs. Then, it calls
partition(input_list, start, end, start) (defined in the previous
exercise) to partition the input list into two slices. Finally, it executes itself recursively on

https://www.youtube.com/watch?v=MZaf_9IZCrc

the two partitions (neither of which includes the pivot value since it has been already
correctly positioned through the execution of partition). In addition, define the base case
of the algorithm appropriately to stop if needed before to run the partition algorithm.
Accompany the implementation of the function with the appropriate test cases. As
supporting material, Fekete and Morr released a nonverbal definition of the algorithm
[Fekete, Morr, 2018c] which is useful to understand the rationale of the binary search
steps.

Acknowledgements
The author wants to thank some of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna – Bruno Santini, Severin Josef Burg, Chantal
Lengua, Mattia Spadoni and Francesco Fernicola – for having suggested corrections and
improvements to the text of this chapter.

References
 Fekete, S. P., Morr, S. (2018a). Binary search. IDEA.
https://idea-instructions.com/binary-search/ (last visited 16 November 2019).

 Fekete, S. P., Morr, S. (2018b). Merge sort. IDEA. https://idea-instructions.com/merge-sort/ (last
visited 16 November 2019).

 Fekete, S. P., Morr, S. (2018c). Quick sort. IDEA. https://idea-instructions.com/quick-sort/ (last
visited 16 November 2019).

 von Neumann, J. (1945). First Draft of a Report on the EDVAC. Available at
https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vn
edvac.pdf (last visited 16 November 2019).

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/br0ast
https://github.com/SeverinJB
https://twitter.com/chantallengua
https://twitter.com/chantallengua
https://github.com/MattiaSpadoni
https://github.com/FrancescoFernicola
https://idea-instructions.com/binary-search/
https://idea-instructions.com/merge-sort/
https://idea-instructions.com/quick-sort/
https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf
https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf

