
Organising information: trees
Author(s)
Silvio Peroni​ – ​silvio.peroni@unibo.it​ – ​https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Buendia family; Gabriel García Márquez; Markup language; Tree

Copyright notice
This work is licensed under a ​Creative Commons Attribution 4.0 International License​. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces a new data structure for defining hierarchical relations: the tree. The
historic hero introduced in these notes is Gabriel García Márquez, who was one of the most
notable writers in Spanish of the 20​th century. One of his novels (​One Hundred Years of
Solitude​) is used to introduce the way trees (as a data structure) can be used to understand a
story. Moreover, even to structure a text.

Historic hero: Gabriel García Márquez
Gabriel García Márquez (shown in ​Figure 1​) was a Colombian novelist, and he was one of the
most notable writers in Spanish of the 20​th century. He won the Nobel Prize for Literature in
1982. As a journalist, he wrote several non-fictional works. However, he is mainly known for his
novels, such as ​Cien años de soledad ​(One Hundred Years of Solitude in English) and ​El amor
en los tiempos del cólera​ (​Love in the Time of Cholera​ in English)​.

Several of his works mention the fictional town of ​Macondo​. This city is the primary setting of
one of his book, i.e. ​One Hundred Years of Solitude​, which narrates the story of the Buendia
family. In particular, the story introduces the life of seven different generations of people of the
same family. It follows its adventures and, often, misfortunes.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Gabriel_Garc%C3%ADa_M%C3%A1rquez
https://en.wikipedia.org/wiki/One_Hundred_Years_of_Solitude
https://en.wikipedia.org/wiki/One_Hundred_Years_of_Solitude
https://en.wikipedia.org/wiki/One_Hundred_Years_of_Solitude
https://en.wikipedia.org/wiki/One_Hundred_Years_of_Solitude
https://en.wikipedia.org/wiki/Love_in_the_Time_of_Cholera
https://en.wikipedia.org/wiki/Love_in_the_Time_of_Cholera
https://en.wikipedia.org/wiki/Love_in_the_Time_of_Cholera
https://en.wikipedia.org/wiki/Love_in_the_Time_of_Cholera
https://en.wikipedia.org/wiki/Love_in_the_Time_of_Cholera
https://en.wikipedia.org/wiki/Macondo
https://en.wikipedia.org/wiki/Macondo

In the Italian edition of this novel, published by Mondadori ​[García Márquez, 1967]​, at the very
beginning of the book, the publisher inserted a family tree of the various generations. While it
provides a few spoilers about some future events, it is instrumental in following the story of the
family since several Buendia people often share the same name. Thus, the family tree is a
handy device which facilitates the reader to follow the story, understanding to whom the narrator
is referring to.

Figure 1. ​A portrait of Gabriel García Márquez. Picture by Jose Lara, source:

https://en.wikipedia.org/wiki/File:Gabriel_Garcia_Marquez.jpg​.

García Márquez is the second Latin American writer we have used in this course. We use him to
introduce specific topics related to the Computational Thinking and Computer Science domains.

https://en.wikipedia.org/wiki/File:Gabriel_Garcia_Marquez.jpg

Trees (such as family trees) are particular kinds of structures that allow one to define a
hierarchy of values that can be useful for a plethora of different tasks or computations.

Where is the tree?
It is not the first time we have adopted a tree for describing something. In particular, in the
chapter "Dynamic programming algorithms"​, we used a tree (reprised in ​Figure 2​) for showing
the execution of the recursive calls to the function implementing the algorithm to find the
Fibonacci number.

Figure 2.​ The tree that describes the various recursive calls for calculating the Fibonacci

number at the 4​th​ month, as described in ​chapter "Dynamic programming algorithms"​.

A Digital Humanist has to deal with trees in daily tasks. For instance, marking a text up using a
specific markup language, i.e. a language for associating specific roles to the various parts of a
text, in an activity one has to address several times. Trees (as data structures) are the grounds
for such a marking activity.

Marking-up a text is something that, even implicitly, we do when we look at a piece of text, such
as a novel. For instance, please consider the following excerpt from the first chapter of ​Alice’s
Adventure in Wonderland​ by Lewis Carroll ​[Carroll, 1866]​:

Alice was beginning to get very tired of sitting by her sister on the bank, and of having
nothing to do: once or twice she had peeped into the book her sister was reading, but it
had no pictures or conversations in it, “and what is the use of a book,” thought Alice,
“without pictures or conversations?”

https://comp-think.github.io/book/10.pdf
https://comp-think.github.io/book/10.pdf

So she was considering in her own mind, (as well as she could, for the hot day made her
feel very sleepy and stupid,) whether the pleasure of making a daisy-chain would be
worth the trouble of getting up and picking the daisies, when suddenly a white rabbit with
pink eyes ran close by her.

Each part of the text of the content above is organised precisely. Specific blocks of text are
contained in paragraphs, that are organised within chapters, that finally compose the book.

Figure 3.​ The first two paragraphs of ​Alice’s Adventure in Wonderland​ marked up with basic

textual structures.

Figure 4.​ The tree that describes the containment of the various structures in the initial text of
Alice’s Adventure in Wonderland​.

Besides, the text within each paragraph can contain additional structures, such as quotations
when a character is speaking. ​Figure 3 shows all these structures. The main structure (i.e. ​book​)
is described as a sort of box containing several boxes labelled ​chapter​, each containing other
boxes labelled ​paragraph​, and so on. Enclosing part of a text within a labelled box is called
markup. Appropriate ​markup languages have been defined to enable such kinds of annotations
on a text.

<html>

 <head>

 <title>Alice's Adventures in Wonderland</title>

 </head>

 <body>

 <section role="doc-chapter">

 <p>

 Alice was beginning to get very tired of sitting by

 her sister on the bank, and of having nothing to do:

 once or twice she had peeped into the book her

 sister was reading, but it had no pictures or

 conversations in it, <q>and what is the use of a

 book,</q> thought Alice, <q>without pictures or

 conversations?</q>

 </p>

 <p>

 So she was considering in her own mind, (as well as

 she could, for the hot day made her feel very sleepy

 and stupid,) whether the pleasure of making a

 daisy-chain would be worth the trouble of getting up

 and picking the daisies, when suddenly a white

 rabbit with pink eyes ran close by her.

 </p>

 <p>...</p>

 </section>

 <section role="doc-chapter">...</section>

 ...

 </body>

</html>

Listing 1.​ A possible representation of the aforementioned text from ​Alice’s Adventures in
Wonderland​ in HTML.

https://en.wikipedia.org/wiki/Markup_language

The organisation mentioned above of boxes describes a precise hierarchy between them. The
bigger one (i.e. ​book​) contains smaller ones (i.e. ​chapters​), those contain even smaller ones
(i.e. ​paragraphs​) and so on. When we are in the presence of such a hierarchical organisation of
non-overlapping items, we can abstract it as a tree, as shown in ​Figure 4​.

Languages such as the ​one provided by the Text Encoding Initiative (TEI) and the ​Hypertext
Markup Language (HTML) are peculiar exemplars of markup languages. They allow one to
construct hierarchies of markup elements for structurally and semantically annotating a text. For
instance, ​Listing 1 shows a possible HTML representation of the quotation mentioned above
from ​Alice’s Adventures in Wonderland​.

Trees
A ​tree is a data structure that simulates a hierarchical tree, composed by a set of nodes related
to each other by a particular hierarchical parent-child relation. As shown in ​Figure 5​, this data
structure usually follows a top-down presentation order, contrary to the actual real organisation
of the plant.

Figure 5. ​A tree with the typical nomenclature of its nodes considering the one highlighted in
yellow as the focus. In this figure, the bold border is used to identify the root node of the tree
(i.e. the only node without any parent). Instead, the dashed border is used to indicate the leaf

nodes of a tree (i.e. those nodes that do not have any children).

http://www.tei-c.org/Guidelines/P5/
http://www.tei-c.org/Guidelines/P5/
https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/
https://www.w3.org/TR/html5/
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Tree_(data_structure)

The originating (or starting) node is called ​root node​, placed at the very top of the tree. Instead,
the terminating nodes, called ​leaf nodes​, are placed at the very bottom. Taking into
consideration a node of a tree, e.g. the yellow one highlighted in ​Figure 5​, we can name
precisely all the other nodes surrounding it. In particular:

● the ​parent node of a given one is a node directly connected to another one when moving
close to the root node;

● a ​child node of a given one is a node directly connected to another one when moving
away from the root node;

● a ​sibling node​ of a given one is a node that shares the same parent node;
● an ​ancestor node of a given one is a node that is reachable by following the child-parent

path repeatedly;
● a ​descendant node of a given one is a node that is reachable by following the

parent-child path repeatedly.

In Python, a tree is a set of nodes linked together according to parent-child relationships. Each
tree is identified by its root node, which is unique. While there is no built-in implementation of
the tree data structure in Python, there are some external packages that are very well-suited for
the task. Among those, one of the most famous ones is ​anytree​.

This package allows one to create a node of a tree using the constructor ​Node(name,

parent=None) ​. Thus, each node must specify a name, that can be any Python object such as
a string, and a parent node. If the parent is not specified, then it will assume ​None as value,
which implicitly defines it as the root node of a tree. In ​anytree​, the constructor is the primary
mechanism for defining a tree by merely stating the parent relations during the definition of new
nodes.

It is worth mentioning that a parent node includes its children in a precise order. In particular,
the order of insertion creates a kind of ordered list between all the sibling nodes. For instance, in
the example in ​Listing 2​, ​paragraph_1 comes before ​paragraph_2 in the siblings of the
node body.

The advantages of using ​anytree are that it makes available many facilities for accessing
various information associated with a node, using some variables associated with the class
Node​. The main variables are:

● <node>.name ​ returns the object used as a name when creating ​<node> ​;
● <node>.children ​ returns a tuple listing all the children of ​<node> ​;
● ​<node>.parent ​ returns the parent of ​<node> ​;
● <node>.descendants returns a tuple listing all the descendants of ​<node> (including

its children);
● <node>.ancestors returns a tuple listing all the ancestors of ​<node> (including its

parent);

https://github.com/c0fec0de/anytree

● <node>.siblings ​ returns a tuple listing all the siblings of ​<node> ​;
● ​<node>.root ​ returns the root node of the tree containing ​<node> ​.

from anytree import Node

book = Node("book")

chapter_1 = Node("chapter", book)

chapter_2 = Node("chapter", book)

paragraph_1 = Node("paragraph", chapter_1)

text_1 = Node("Alice was beginning to get very tired of sitting by "

 "her sister on the bank, and of having nothing to do: "

 "once or twice she had peeped into the book her sister "

 "was reading, but it had no pictures or conversations "

 "in it, ", paragraph_1)

quotation_1 = Node("quotation", paragraph_1)

text_2 = Node("“and what is the use of a book,”", quotation_1)

text_3 = Node(" thought Alice, ", paragraph_1)

quotation_2 = Node("quotation", paragraph_1)

text_4 = Node("“without pictures or conversations?”", quotation_2)

paragraph_2 = Node("paragraph", chapter_1)

text_5 = Node("So she was considering in her own mind, (as well as "

 "she could, for the hot day made her feel very sleepy "

 "and stupid,) whether the pleasure of making a "

 "daisy-chain would be worth the trouble of getting up "

 "and picking the daisies, when suddenly a white rabbit "

 "with pink eyes ran close by her.", paragraph_2)

paragraph_3 = Node("paragraph", chapter_1)

text_6 = Node("...", paragraph_3)

text_7 = Node("...", chapter_2)

text_8 = Node("...", book)

Listing 2.​ A simple tree depicting the textual structure introduced in ​Figure 4​. The source code
of this listing is available ​as part of the material of the course​.

It is worth mentioning that we can update the variables defining the children and the parent of a
node by assigning to them a particular collection (e.g. a list or a tuple) of nodes. For instance,
we can invert the ordering of the first two paragraphs defined as children of the firsts ​chapter
node in ​Listing 2​ as follows:

chapter_1.children = (paragraph_2, paragraph_1)

http://comp-think.github.io/python/tree_instructions.py

Also, it is possible to visualise the tree graphically on the shell by using appropriate tree
renderers​, described by the class ​RenderTree included in the ​anytree package. Once imported,
one can create a new ​RenderTree object by specifying a node as input (e.g. the root node of the
tree), and then one can print such new renderer object to obtain a textual representation of the
tree, as shown in the following excerpt:

from anytree import RenderTree

renderer = RenderTree(book)

print(renderer)

Node('/book')

├── Node('/book/chapter')

│ ├── Node('/book/chapter/paragraph')

│ │ ├── Node('/book/chapter/paragraph/Alice was…')

│ │ ├── Node('/book/chapter/paragraph/quotation')

│ │ │ └── Node('/book/chapter/paragraph/quotation/“and…')

│ │ ├── Node('/book/chapter/paragraph/ thought Alice, ')

│ │ └── Node('/book/chapter/paragraph/quotation')

│ │ └── Node('/book/chapter/paragraph/quotation/“without…')

│ ├── Node('/book/chapter/paragraph')

│ │ └── Node('/book/chapter/paragraph/So she was…')

│ └── Node('/book/chapter/paragraph')

│ └── Node('/book/chapter/paragraph/...')

├── Node('/book/chapter')

│ └── Node('/book/chapter/...')

└── Node('/book/...')

Exercises
1. Write in Python a ​recursive function ​def breadth_first_visit(root_node) ​.

This function takes the root node of a tree and returns a list containing all the nodes of
the tree according to a breadth-first order. The breadth-first order considers all the nodes
of the first level, then those ones of the second level, and so forth. For instance,
considering the nodes created in ​Listing 2​, the function called on the node ​book should
return the following list: ​[book, chapter_1, chapter_2, text_8,

paragraph_1, paragraph_2, paragraph_3, text_7, text_1,

quotation_1, text_3, quotation_2, text_5, text_6, text_2,

text_4] ​. Accompany the implementation of the function with the appropriate test
cases.

2. Write in Python the pure iterative version of the function defined in the previous exercise.

Acknowledgements
The author wants to thank one of the students of the ​Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna – ​Severin Josef Burg – for having suggested
corrections and improvements to the text of this chapter.

References
García Márquez, G. (1967). Cent'anni di solitudine. Mondadori, edizione 2017. ISBN:
978-8804675983

Carroll, L. (1866). Alice’s Adventures in Wonderland. Macmillan and Co. Available at
https://en.wikisource.org/wiki/Alice%27s_Adventures_in_Wonderland_(1866) (last visited 1
December 2019)

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/SeverinJB
https://en.wikisource.org/wiki/Alice%27s_Adventures_in_Wonderland_(1866)

