
Greedy algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Evelyn Berezin; Line wrap; Word processor

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the last kind of algorithms presented in this book, i.e. the greedy
algorithms. The historic hero introduced in these notes is Evelyn Berezin, one of the most
important business women of the past century, who have created the first word processor.

Historic hero: Evelyn Berezin
Evelyn Berezin (depicted in Figure 1) was a physicist. She began to work in a company that
produced digital computers, and where she started to work on particular the development of the
logic designs of computers – e.g. [Auerbach et al., 1962]. After a bunch of years passed in
changing job and several contributions related to the development of large computer systems
such as the computerised reservation system for United Airlines, in 1969, she founded her own
company: Redactron Corporation.

In this new company, she started to work on computer systems to simplify the work of
secretaries. The main product of the company was called Data Secretary: the very first word
processor in history. It was a stand-alone device developed for addressing that specific task, to
replace the more common typewriter. Data Secretary was the precursor of all the series of word
processors developed since that date. While they were stand-alone devices initially, word
processors soon have become independent software applications. We remember Electric Pencil
(1976), WordStar (1978), Microsoft Word (1983) and OpenOffice Writer (1999).

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Evelyn_Berezin
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Word_processor
https://en.wikipedia.org/wiki/Electric_Pencil
https://en.wikipedia.org/wiki/Electric_Pencil
https://en.wikipedia.org/wiki/WordStar
https://en.wikipedia.org/wiki/Microsoft_Word
https://en.wikipedia.org/wiki/OpenOffice.org

 Figure 1. A picture of Evelyn Berezin taken in 2015. Picture from the Computer History

Museum, source:
https://images.computerhistory.org/blog-media/2015-fellow-awards-evelyn-berezin.jpg.

Greedy algorithms
A greedy algorithm is a particular algorithmic approach. At every stage of execution, it always
makes the optimal choice (i.e. the best one) in that specific moment. For certain kinds of
problems, this behaviour allows us to reach the best possible solution to the computational
problem into consideration. For instance, if you have to determine the minimum number of euro
coins needed for making a change, then a greedy algorithm will return an optimal solution
overall:

1. consider the coins to choose for the change as ordered in a decrescent way, from the
highest value (i.e. 2 euros) to the lowest one (i.e. 1 cent);

2. for each kind of value, add in the candidate set of the solution as much coins of that
value as possible until their sum is lesser than the remaining of the change to give;

3. If we reach the change value, return it.

However, sometimes it is possible that the solution found, while it provides a correct solution to
the problem, is just a suboptimal solution. For instance, driving from Florence to Bologna, we

https://www.computerhistory.org/
https://www.computerhistory.org/
https://images.computerhistory.org/blog-media/2015-fellow-awards-evelyn-berezin.jpg
https://en.wikipedia.org/wiki/Greedy_algorithm

can encounter a crossroad with two signs indicating two different routes to get to Bologna. The
left road allows us to get to Bologna by travelling for 42 kilometres. On the other hand, the right
way enables us to get to Bologna by going for 56 kilometres. A simple greedy approach would
select the left route: at the moment, it seems the most convenient scenario. However, the plan
does not predict the existence of possible traffic on the left road. Consequently, it would be
possible to arrive in Bologna even after a car that takes the right route.

There are two main characteristics that a computational problem should show to be sure that
the application of a greedy approach will bring to an optimal solution to the problem. The first
one is that the greedy choice property should be guaranteed. This property means that, at a
particular step, we can choose the best candidate for improving the set of candidates bringing to
a solution.

The other characteristic is that the problem has an optimal substructure. In particular, we must
build the optimal solution to a computational problem by considering the optimal solutions to its
subproblems. For instance, the previous example of the travel from Florence to Bologna does
not have an optimal substructure. We can encounter accidents on a road we chose in a
previously-chosen optimal strategy (i.e. the shortest path).

Line wrap
Wrapping a line, i.e. understanding where to break a line in a page, is one of the problems one
has to tackle when dealing with documents, either in print or digital forms. For instance, when a
person is using a typewriter for writing a document, at a certain point, after she has written a
bunch of characters, there is a mandatory action to perform which is the carriage and return
operation, that is performed mechanically on the typewriter itself. When the writer notices that
the line has no more space for imprinting a new word, she initialises the typewriter to start from
the very beginning of the left border but in the following line.

 Figure 2. A screenshot that depicts how OpenOffice Writer deals with line wrap.

https://en.wikipedia.org/wiki/Optimal_substructure
https://en.wikipedia.org/wiki/Line_wrap_and_word_wrap
https://www.openoffice.org/
https://www.openoffice.org/

Test case for the function

def test_line_wrap(text, line_width, expected):

result = line_wrap(text, line_width)

if expected == result:

 return True

else:

 return False

Code of the function

def line_wrap(text, line_width):

result = list() # the list of all the lines of a document

the maximum available space per a specific line

space_left = line_width

the current line that is built

line = list()

for word in text.split(" "):

 word_len = len(word)

 # the length of the word plus one space character

 if word_len + 1 > space_left:

 result.append(" ".join(line))

 line = list()

 line.append(word)

 space_left = line_width - word_len

 else:

 line.append(word)

 space_left = space_left - (word_len + 1)

we add the remaining line to the document

result.append(" ".join(line))

return "\n".join(result)

Tests

print(test_line_wrap("Just a word.", 15, "Just a word."))

print(test_line_wrap("Just a word.", 1, "\nJust\na\nword."))

print(test_line_wrap("Just a few words.", 9, "Just a\nfew\nwords."))

print(test_line_wrap("This is a simple example.", 10,

 "This is a\nsimple\nexample."))

 Listing 1. The implementation of the algorithm for calculating the line-wrap problem in Python.
The source code of this listing is available as part of the material of the course.

http://comp-think.github.io/python/line_wrap.py

In modern tools, such as word processors (shown in Figure 2), an algorithm is in charge of
handling the line wrap. Such algorithm takes care of choosing when there is enough space to
put that word in the current line. Generally speaking, we can describe the problem in the
following manner:

Computational problem: break a text into lines such that it will fit in the available width of a
page.

A greedy approach is very efficient and effective for addressing the aforementioned
computational problem. It will proceed as follows:

1. For each word in the input text, see if there is enough space in the line for adding that
word;

2. If there is space, add the word to the line; otherwise,
3. Declare finished the current line, and add the word as the first token of the following line.

To implement this algorithm, we need two methods for tokenizing and recomposing strings. The
first of these methods is <string>.split(<string_separator>). This method allows us
to separate the string according to a specific set of characters the string may contain, specified
by the parameter <string_separator> . For instance, if we have the variable my_string
assigned to "a b c" , the execution of the aforementioned method, i.e. my_string.split("

") , returns the following list: ["a", "b", "c"] .

The other method we need, i.e. <string_separator>.join(<list_of_strings>) ,
implements the opposite operation, i.e. it is able to concatenate the strings in a list again,
according to a particular sequence of characters. For instance, if we have the list my_list =

["a", "b", "c"] , the execution of the aforementioned method, i.e. " ".join(my_list) ,
returns the following string: "a b c" .

We now have all the ingredients for implementing our algorithm for the line-wrap in Python, as
shown in Listing 1.

Exercises
1. Implement the algorithm introduced in Section "Greedy algorithms" for returning the

minimum amount of coins for a change. Accompany the implementation of the function
with the appropriate test cases.

2. Suppose one has to address the maximum number of activities in a day choosing them
from a set of available activities, considering that one cannot address more than one
activity simultaneously. Each activity is defined by a tuple, where the first element
defines the starting time (a value from 0 to 24, indicating the starting hour) while the
second element defines the finish time (a value from 0 to 24, indicating the finish hour).

Develop the Python function def select_activities(set_of_activities) by
using a greedy approach. It takes in input a set of activities of a day and returns the list
of the maximum number of non-overlapping activities one can address, ordered
according to the starting time. Hint: think about the finish time of each activity and see
how it may affect the selection. Accompany the implementation of the function with the
appropriate test cases.

Acknowledgements
The author wants to thank one of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna, Tanise Pagnan Ceron and Eleonora Peruch,
for having suggested corrections to the text of this chapter.

References
 Auerbach, A. A., Evelyn, B., Samuel, L., Shaw, R. F. (1962). Electronic data file processor. U.S.
Patent No. 3,017,610. Washington, DC: U.S. Patent and Trademark Office.
https://patentimages.storage.googleapis.com/e5/ca/5b/9b2d6591f0cb14/US3017610.pdf (last
visited 18 December 2018)

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/Tanise
https://github.com/EleonoraPeruch
https://patentimages.storage.googleapis.com/e5/ca/5b/9b2d6591f0cb14/US3017610.pdf

