
Algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Algorithm; Ada Lovelace; Flowchart; Pseudocode

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the notion of algorithm and pseudocode, to provide the initial tools for
instructing a computer in executing a particular task. Also, it presents a specific kind of graphical
pseudocode, i.e. the flowchart. The historic hero introduced in these notes is Ada Lovelace,
considered the first computer programmer. Her work in translating and commenting on a
scholarly paper describing Babbage's Analytical Engine has been one of the most important
milestones of the Computer Science discipline.

Historic hero: Ada Lovelace
Ada Lovelace (shown in Figure 1) was the daughter of the poet Lord Byron. She was an English
mathematician who became famous for her work on Babbage's Analytical Engine. Despite her
father's habits, her mother, Anne Isabella Milbanke, actively promoted Ada's interest in logic and
mathematics, even after her father’s death. One of her mother's goals was to prevent her from
incurring the same insanity that characterised her father's life. However, Byron's creativity
manifested unpredictably anyway.

In 1833, she attended a party organised by Charles Babbage to present its Difference Engine.
She was so impressed by Babbage's invention that she started a correspondence with him that
spanned 27 years [Morais, 2013]. She was the English translator of the first article about the
Analytical Engine, which was written in French by Luigi Federico Menabrea, and she enriched it

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Lord_Byron
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Ada_Lovelace
https://en.wikipedia.org/wiki/Charles_Babbage
https://en.wikipedia.org/wiki/Difference_engine
https://en.wikipedia.org/wiki/Luigi_Federico_Menabrea


with several annotations. Among these annotations, there was a description of how to use the
Analytical Engine to calculate Bernoulli numbers [Menabrea, 1842]. This description was the
first computer program ever written: the first implementation of a mechanical computer algorithm
in history. Ada created it without even having the real implemented machine – since the
Analytical Engine was just a theoretical machine that Babbage did not physically build.

Figure 1. Portrait of Ada Lovelace. Source:
https://en.wikipedia.org/wiki/File:Ada_Lovelace_portrait.jpg.

However, her vision of the possible uses of the Analytical Engine went even further [Morais,
2013]:

https://en.wikipedia.org/wiki/Bernoulli_number
https://en.wikipedia.org/wiki/File:Ada_Lovelace_portrait.jpg


The operating mechanism can even be thrown into action independently of any object to
operate upon (although of course no result could then be developed). Again, it might act
upon other things besides number, were objects found whose mutual fundamental
relations could be expressed by those of the abstract science of operations, and which
should be also susceptible of adaptations to the action of the operating notation and
mechanism of the engine. Supposing, for instance, that the fundamental relations of
pitched sounds in the science of harmony and of musical composition were susceptible
of such expression and adaptations, the engine might compose elaborate and scientific
pieces of music of any degree of complexity or extent.

That “science of operations” refers to a particular field that was named and identified only after
several years. Thus, in practice, Ada Lovelace talked about Computer Science one hundred
years before its formal introduction. Nevertheless, people have recognised Ada Lovelace as the
first computer programmer in history for her work in the field.

Algorithms and programmers
Before introducing the main topic of this chapter, it would be worth focusing on simple examples
we usually face in our daily life. Figure 2 illustrates two step-by-step procedures we have to
follow to prepare canapé crackers and assemble a particular lamp, respectively. The actual goal
of the two examples is different: the first is a recipe, while the other is a set of instructions for
assembling a utensil. However, they are described in terms of a shared abstract notion. Indeed,
they are instructions for producing something starting from some initial material we have, i.e. an
algorithm.

Figure 2. Two pictures depicting a recipe (left) and the instructions for assembling a lamp
(right). Left picture by Phil! Gold, source: https://www.flickr.com/photos/phil_g/17282816/. Right

picture by Richard Eriksson, source: https://www.flickr.com/photos/sillygwailo/3183183727/.

https://www.flickr.com/photos/phil_g/17282816/
https://www.flickr.com/photos/sillygwailo/3183183727/


The word algorithm is a combination of the Latin word algorismus and the Greek word1

arithmos, meaning number. We can define an algorithm as an abstraction of a step-by-step
procedure that takes something as input and produces some desired output [Wing, 2008]. Each
algorithm is written in a specific language. We use such language to communicate the
instructions defined by the algorithm to a computer (either human or machine) to obtain
something by processing some input material.

Usually, a computer programmer is a person who creates algorithms as (electronic) computer
programs written in a particular computer language. However, in this text, we use the term
​computer programmer to refer to anyone that creates algorithms that any computer can
interpret, be it a human or a machine.

Flowcharts
There is no standard language that can be used to describe an algorithm so that it is
immediately understandable by any computer. However, often Computer Scientists rely on
pseudocode when they want to describe a particular algorithm. Pseudocode is an informal
language that can be interpreted easily by any computer, even if humans usually use it to
communicate an algorithm’s steps to other humans. Often, an algorithm described in
pseudocode is not runnable by an electronic computer. However, its constructs are closely tied
to the ones that are typically defined, with formal grammar, in programming languages.

Any algorithm can be expressed in pseudocode. And, in principle, that pseudocode can be
translated into different programming languages. Usually, using pseudocode enables one to
simplify some passages of the algorithm by describing them in natural language. This
simplification is not possible using and proper programming language where one has to specify
clearly and formally every passage of the algorithm.

In this chapter, we use a particular graphical alternative to common pseudocode, which is
suitable for being easily understandable by humans: a flowchart. A flowchart is a specific kind of
diagram that can be used to write algorithms and relies on a small number of widgets, as
illustrated in Table 1.

The algorithms we will develop during the first part of this text must be understood primarily by
humans. Thus, a good way to check if an algorithm one developed can be interpreted correctly
by a computer is to ask a colleague to execute it using a particular input. For instance, we can
store such execution by writing down all the passages of the execution on a piece of paper.

While we can sketch out such flowchart diagrams on a piece of paper, online tools also allow
you to create a flowchart by using an (electronic) computer. For example, the one used to make

1 The word algorismus is the Latinization of the name Al-Khwarizmi, who was a great mathematician from
Persia in the 8th century.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Flowchart
https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi


all the diagrams in this chapter is called Diagrams.net, which is a free-to-use Web application
with a friendly graphical user interface.

Widget Name Definition

Flowline The arrow is used to define the order to follow to
execute the operations. The flow indicated by the
arrows begins in the starting terminal and ends in the
ending terminal (see next widget).

Terminal It indicates the beginning and end of an algorithm. It
contains a text (usually either “start” or “end”) to
disambiguate which role has the particular terminal
widget in the context of the algorithm.

Process It expresses (usually one) instruction or operation. Its
execution can change the current state of some
variables used in the algorithm. The text it includes
depicts the instruction to execute.

Decision It depicts a conditional operation: it checks a
condition, and the execution continues in a particular
branch of the flowchart depending on the current
status of the algorithm's execution. Usually, this
operation creates two alternative branches: one to be
followed whether the condition is valid and the other if
the condition is not valid.

Input / Output It allows one to specify possible input/output material
used/returned by the algorithm, usually at the
beginning or end of its execution.

Table 1. The widgets that can be used in a flowchart and are helpful for writing an algorithm.

Our first algorithm
The goal of this chapter is to develop our first algorithm. It can be described informally by the
following natural language text:

Consider three different strings as input, i.e. two words and a bibliographic entry of a
published paper. The algorithm must return the number 2 if the bibliographic entry
contains both words; the number 1 if the bibliographic entry contains only one word; the
number 0 otherwise.

A methodology for the development of an algorithm must focus on specific aspects of the
description provided. First, it is crucial to identify the input material that such an algorithm uses

https://diagrams.net


for producing something. In the previous example, the input includes a first word, a second
word, and the bibliographic entry, all defined as strings, i.e. sequences of characters.

The second important aspect is the output that the algorithm should return starting from the
input material mentioned above. In the previous example, the output is a number: 2, 1, or 0,
depending on the particular input processed.

It could be helpful to identify such input and output directly on the natural language description
of the algorithm to implement. For instance, considering again the description mentioned above,
the following excerpt highlights the input in bold blue text, while the output in italic red text:

Consider three different strings as input, i.e. two words and a bibliographic entry of a
published paper. The algorithm must return the number 2 if the bibliographic entry
contains both words; the number 1 if the bibliographic entry contains only one word; the
number 0 otherwise.

In addition to such visual identification of the input and output, it is crucial to understand which
output should be returned by the algorithm according to different input values. The idea is to
emulate the execution of an algorithm on specific input by following the informal instruction
provided in the natural language description. This operation allows one to understand what
should be the expected result of the algorithm execution before having a concrete
implementation of the algorithm (i.e. the flowchart) at hand. For instance:

● input: first word “Shotton”, second word “Open”, bibliographic entry “Shotton, D.
(2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a” – output: 2;

● input: first word “Citations”, second word “Science”, bibliographic entry “Shotton, D.
(2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a” – output: 1;

● input: first word “References”, second word “1983”, bibliographic entry “Shotton, D.
(2013). Open Citations. Nature, 502: 295–297. doi:10.1038/502295a” – output: 0.

The idea of having such input-output executions is essential to understand the expected
behaviour of an algorithm. Besides, these examples can be used to test the flowchart that
formally defines the algorithm. For instance, one can use them to understand if all the various
instructions depicted by the widgets in the flowchart return the correct output or not.

Finally, it is worth anticipating here the difference that exists between distinct kinds of objects.
As shown above, the algorithm must take, as input, three items of a specific type, i.e. string,
while it always returns another item of another kind, i.e. number. Strings and numbers are two
distinct data entities. A string is a sequence of characters, and each character can be either a
letter (e.g. “a” and “b”), a digit (e.g. “1” and “9”), a punctuation entity (e.g. “.” and “;”), etc.
Instead, a number is the usual mathematical entity – 1, 1983, 2042, etc. To distinguish between
strings and numbers in the example above, strings are defined between quotations (e.g.
“Shotton”), while numbers are represented as such (e.g. 2). Finally, it is essential to notice that



strings and numbers are always different entities, even if they intuitively appear similar. For
instance, the string “1983” is not equal to the number 1983 (they are different things, like an
orange and a tangerine), even if they may seem similar at first sight.

Given these premises, the next sections will show how to implement the algorithm described in
the natural language text above using a flowchart. Let us start.

An incomplete version
In the flowchart diagram model, each algorithm is defined using two terminal widgets that
identify the beginning and the end of the algorithm. The start terminal has one arrow starting
from it to the next instruction. One can reach the end terminal from different points of the
algorithm, and thus it is linked by at least one arrow.

This subsection introduces the first incomplete version of the algorithm. Here the instructions
mentioned above are simplified a bit. In particular, we want to say that the algorithm takes as
input only two strings: an input word and a bibliographic entry. The algorithm returns the number
1 if the bibliographic entry contains the input word; otherwise, it returns 0. Figure 3 shows the
flowchart implementing this incomplete version of the algorithm.

Figure 3. The incomplete algorithm described by a simple flowchart.

In this partial version, we used several flowchart widgets. In particular:

● the start and end terminals introduced above;
● three input/output widgets to get the value specified as the input of the algorithm and to

return a 0 or a 1 depending on such input information;



● a decision widget to choose which of the output values to return according to the
particular situation.

The final algorithm
While the previous subsection introduced a first initial implementation of an incomplete version
of the algorithm, in this section, a complete version of the algorithm is provided as a flowchart
diagram, shown in Figure 4. However, to implement such an algorithm with a flowchart, we need
to adopt all the widgets introduced in Table 1by combining a sequence of process widgets with
decision widgets to implement the whole flow of the algorithm. Of course, the flowchart
presented is just one possible way to design the original algorithm. Other approaches can be
indeed used and can be correct as well.

We use a process widget for initialising the value to be returned. We specify it after the input
widget, and it prescribes setting a particular variable, i.e. the result value, to 0. Such a variable
is used to store the result that the algorithm should return, and it will be modified depending on
the particular operations executed. The decision widgets check two conditions: whether the
bibliographic entry contains the first and the second word. If both conditions are not passed, we
return the result value set initially in the first process widget. Otherwise, every time one of the
conditions is valid, the result value is incremented by 1. These passages are responsible for
implementing the algorithm, as requested at the beginning of this section.

Figure 4. The complete algorithm presented with a flowchart.

Once developed the flowchart, we can check if it works correctly by executing its instruction on
particular input data. To this end, we can use the emulated input-output scenarios introduced at



the beginning of this section. If the result returned by executing the flowchart with those input
values is not equal to the expected output, there is probably a mistake.

Exercises
1. What is the result of the execution of the algorithm in Figure 4 using "Peroni",

"HTML", and "Peroni, S., Osborne, F., Di Iorio, A., Nuzzolese, A.
G., Poggi, F., Vitali, F., Motta, E. (2017). Research Articles
in Simplified HTML: a Web-first format for HTML-based scholarly
articles. PeerJ Computer Science 3: e132. e2513. DOI:
https://doi.org/10.7717/peerj-cs.132" as input values?

2. Write the flowchart of an algorithm that takes in input two objects and returns the string
“yes” whether the two objects are the same; otherwise, it returns the string “no”.

3. The previous chapter, entitled “Introduction to Computational Thinking”, illustrates two
different algorithms, expressed in natural language, for implementing the Fibonacci
function. Create two distinct flowcharts to implement both of them.

Acknowledgements
The author wants to thank some of the students attending courses of the Digital Humanities and
Digital Knowledge second-cycle degree of the University of Bologna, Francesco Fernicola and
Margherita Martinelli, for having suggested corrections and improvements to the text of this
chapter.

References
Menabrea, L. F. (1842). Sketch of the Analytical Engine Invented by Charles Babbage – With
notes upon the Memoir by the Translator: Ada Augusta, Countess of Lovelace. Scientific
Memoirs, 3. http://www.fourmilab.ch/babbage/sketch.html (last visited 15 October 2019)

Morais, B. (2013). Ada Lovelace, the First Tech Visionary. The New Yorker.
https://www.newyorker.com/tech/elements/ada-lovelace-the-first-tech-visionary (last visited 15
October 2019)

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366
(1881): 3717. DOI: https://doi.org/10.1098/rsta.2008.0118 - also available at
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696102/ (last visited 15 October 2019)

https://comp-think.github.io/book/01.pdf
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/FrancescoFernicola
https://github.com/margheritamartinelli1997
http://www.fourmilab.ch/babbage/sketch.html
https://www.newyorker.com/tech/elements/ada-lovelace-the-first-tech-visionary
https://doi.org/10.1098/rsta.2008.0118
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2696102/

