
Computability
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Alan Turing; Computability; Halting problem; Turing machine

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the notion of computability and the computational cost of algorithms.
The historic hero presented in these notes is Alan Turing, considered the father of Theoretical
Computer Science and Artificial Intelligence. His work on a particular model of computation,
known as the Turing machine, had been the primary tool for highlighting the possibilities and the
limits of automatic computation and, more in general, the modern electronic computer.

Historic hero: Alan Turing
Alan Mathison Turing (shown in Figure 1) was a computer scientist. His works spanned several
disciplines, including mathematics, logic, philosophy, and biology – which is why people have
referred to him as a natural philosopher [Dodig-Crnokovic, 2013]. He is considered the father of
Theoretical Computer Science and Artificial Intelligence due to its frontier contributions that
provided his theoretical machine named after him [Turing, 1937] . Besides, his studies on the1

relationship between electronic computers and intelligence [Turing, 1950] brought him to define
the thought experiment known as the Turing test.

1 The Turing machine has been used for modelling plenty of situations in several domains, such as
cellular automata [Wolfram, 1983] [Wolfram, 2002] in Applied Physics.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Theoretical_computer_science
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Turing_test

He was one of the key figures behind the decryption of Enigma, the cypher machine used by
Nazi Germany for protecting communications . Also, his studies do not focus only on Computer2

Science topics. They include essential works in Biology. In particular, he described how natural
patterns (e.g. stripes, spots and spirals) might spontaneously arise out of a uniform state
[Turing, 1952].

Figure 1. Picture of Alan Turing taken in 1927. Source:
https://en.wikipedia.org/wiki/File:Alan_Turing_Aged_16.jpg.

2 A story that has been recently portrayed as a movie by Morten Tyldum's The Imitation Game.

https://en.wikipedia.org/wiki/Enigma_machine
https://en.wikipedia.org/wiki/File:Alan_Turing_Aged_16.jpg
https://en.wikipedia.org/wiki/The_Imitation_Game

The Turing machine
In 1936, Turing developed his machine to answer an important issue related to Hilbert's decision
problem, which asks about the possibility of creating an algorithm for deciding if a first-order
logic formula is universally valid or not. Alonzo Church also analysed the problem
simultaneously by addressing it from a totally different (but pragmatically equivalent) perspective
than Turing's approach. The machine proposed by Turing was only theoretical. Indeed, he did
not build it physically. Recently, several people provided physical prototypes of Turing's idea,
such as the one shown in Figure 2.

Figure 2. A physical implementation of a Turing machine with a finite tape. Picture by GabrielF,
source: https://commons.wikimedia.org/wiki/File:Model_of_a_Turing_machine.jpg.

The Turing machine can simulate any algorithm using a pretty simple set of tools. It is
composed of an infinite memory tape containing cells. Each cell can have a symbol (i.e. either 0
or 1, where 0 is the blank symbol, assigned to all the cells in advance) that can be read and
written by the head of the machine. The state of the machine at a specific time is recorded. The

https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Alonzo_Church
https://commons.wikimedia.org/wiki/File:Model_of_a_Turing_machine.jpg

machine specifies the possible actions to perform in a finite table of instructions. Each
instruction in the table says what to do: write a new symbol, move the head either left or right,
go to a new state. The machine selects a particular instruction according to the current state
and the current symbol under the head. An initial state and zero or more final states are
provided to define where to start and end the process.

For instance, in Table 1, there is a representation of a table of instructions for a simple Turing
machine, where: A is the initial state, and there are no final states. Each row in the table
represents a particular instruction. For instance, the first row says that being in A, if the head
reads 0 or 1 on the tape, then 1 is written down, the head is moved one cell to the right, and the
new state of the machine becomes B.

Current state Tape symbol Write symbol Move head Next state

A 0 or 1 1 right B

B 0 or 1 0 right A

Table 1. A table of instructions of a very simple Turing machine, having initial state A, with no
final states.

Figure 3. A graphical representation of the execution of the Turing machine implementing the
rules introduced in Table 1. In the various figures, the blue polygon represents the head of the
machine, positioned in a specific cell of the tape. The blue circle represents the current state,

while the solid arrow depicts the next state, reached once the machine writes the symbol in the
label of the solid arrow in the cell pointed by the head. Finally, the machine moves the head in

the direction indicated on the label (where R stands for right).

Also, we can represent the table of instructions of a Turing machine graphically. For example,
we can use labelled circles for representing states. Also, we can use arrows pointing to the next

states when a particular symbol is read on the tape. The machine writes the symbol indicated in
the label of an arrow when such an arrow is followed. Similarly, the head of the machine is
moved according to the direction (i.e. left or right) indicated in the arrow’s label. For instance, in
Figure 3, it is shown the execution of the Turing machine related to the table of instructions
introduced in Table 1. In particular, this Turing machine has the characteristic of running forever
– it will never stop its execution – since it writes several 1s separated by 0s indefinitely. Thus,
practically speaking, this Turing machine demonstrates that it is possible to develop algorithms
that run forever without ever ending their execution.

While the Turing machine is quite a simple tool, it enables one to model computation in the
broad sense. While Turing has not proposed it as a sketch for developing electronic computers,
its theoretical properties also apply to real computing machines. In particular, an electronic
computer can compute anything that a Turing machine can compute. This property has been
used to prove the intrinsic limitations on the power of mechanical computation.

People have developed several tools to simulate a Turing machine. The Turing Machine
Visualization is one such tool, mainly designed for academic purposes. It is a simple web
application that allows one to define all the components of a Turing machine through
straightforward language. Once defined the initial state, initialised the tape with 0s, and defined
the table of instructions, one can watch the way the machine runs. In particular, each step of the
execution is shown graphically.

Figure 4. A screenshot of the Web application Turing Machine Visualization.

http://turingmachine.io
http://turingmachine.io
http://turingmachine.io

The various variables can be specified using the following template:

blank: '0'
start state: <start state>
table:

<state>:
<tape symbol>: { write: <symbol>, <R or L move>: <next state> }

<end state>:

Where blank says how to initialise the tape, the table is composed by one or more
<state>s, one of which is used as <start-state>, and one or more (optional) <end
state>s can be specified as well – they is recognisable since no operations have been defined
on them. Following the template above, the Turing machine described in Table 1 is defined as
follows:

blank: '0'
start state: A
table:

A:
0: { write: 1, R: B}
1: { write: 1, R: B }

B:
0: { write: 0, R: A }
1: { write: 0, R: A }

Figure 4 shows the Turing machine implemented by these instructions. Three distinct areas
realise the whole visualisation of the machine. First, a text box contains the rules written
according to the template mentioned above. Second, a graph represents the table of
instructions of the machine. Finally, a sequence of cells represents the tape, where a yellow box
highlights the head of the machine.

The computational cost of an algorithm
In the previous lecture, we have defined what an algorithm and the relation that exists between
algorithms and computers is. In the previous section, we have seen how a simple machine,
which implements an algorithm using a specific language, can compute indefinitely. On the other
hand, other machines could compute a result in a reasonable finite time. And, even algorithms
can spend an exaggerated time (if still limited) to return a result. Thus, it can be helpful to know
how much time indicatively an algorithm needs to produce a result.

This issue is the core topic of one of the essential branches of the theory of computation, i.e. the
computational complexity theory. The research in this field aims at classifying computational
problems. A computational problem is a problem that can be solved algorithmically by a
computer. Each computational problem, thus, can be classified according to a hierarchy of
categories. Each category expresses the difficulty in solving such a problem.

An important subfield of computational complexity theory is the analysis of algorithms. Analysing
an algorithm means understanding the amount of time, storage and other resources needed to
execute such an algorithm. In particular, usually, this analysis focuses on finding a specific
mathematical function that relates the input of an algorithm with the number of instructions that
are run to return the final result from that input. The lesser the instructions to execute, the more
efficient the algorithm will be.

It is worth mentioning that the measure provided by such function is not precise since it is only
an upper bound of the actual performance. However, it is enough to indicate the time needed to
execute a particular algorithm on a specific input.

We do not want to introduce all the theoretical principles and the proper mathematical tools for
addressing such analysis since it is out of the scope of the course . The message to reinforce is3

that the strategy used to develop an algorithm affects, positively or negatively, its efficiency. It is
possible to create two different algorithms addressing the same computational problem that take
different times for returning the result.

Can we compute everything?
After reading all the material introduced in the previous sections, the main question one could
ask is: can we use algorithms for computing whatever we want? In other words: there exists a
limitation on what we can compute? Or, even: is it possible to define a computational problem
that any algorithm cannot solve?

Usually, computer scientists and mathematicians use reductio ad absurdum to demonstrate that
something cannot exist. Reduction ad absurdum aims at coming to a paradoxical and
self-contradictory situation, such as the fact that the existence of an algorithm contradicts its
existence itself. This kind of argument seeks to establish a contention by deriving an absurdity
from its denial, thus arguing that a thesis must be accepted because its rejection would be
untenable [Rescher, 2017] and, eventually, generates paradoxes.

3 However, there are several documents online dedicated to the topic, in particular to the asymptotic
notation which is the main tool used for analysing the behaviour of algorithms. A Khan Academy’s course,
lecture material at Cornell University, and an article in Geeks for Geeks provide sufficient material to start
studying asymptotic notation.

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Analysis_of_algorithms
https://en.wikipedia.org/wiki/Reductio_ad_absurdum
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation
https://www.cs.cornell.edu/courses/cs312/2004fa/lectures/lecture16.htm
https://www.geeksforgeeks.org/analysis-of-algorithms-set-1-asymptotic-analysis/

Paradoxes have mainly been used in logic in the past. While they are funny stories to tell for
teaching, they are also powerful tools for showing limits or constraints of a particular formal
aspect of a field or situation. For instance, one of the most famous paradoxes in mathematics is
the Russell paradox, discovered by Bertrand Russell in 1901. It was one of the most important
discoveries of the beginning of the twentieth century. It has proved that the current set theory
proposed by Georg Cantor, and used as the foundation for Gottlob Frege's work on the
definition of the fundamental laws of arithmetic, led to a contradiction. Thus, it invalidated the set
theory and the work done by Frege – that was in print when Russell communicated his
discovery to him. A variation to that paradox could be formulated as follows.

Figure 5. A graphical representation of the librarian paradox, which is a puzzle derived from
Russell's paradox.

Librarian paradox: In the Library of Babel, there are people of two different kinds. The first kind
of people – named no-needed – are those who look for a book themselves. The other type of
people – named help-needed – are those who do not look for a book themselves, and thus they
need help doing it. One of the people in the library is the librarian. The librarian looks for books
for all those, and those only, who do not look for books themselves (i.e. the help-needed
people). The question is: who looks for books to the librarian?

https://en.wikipedia.org/wiki/Russell%27s_paradox
https://en.wikipedia.org/wiki/Bertrand_Russell
https://en.wikipedia.org/wiki/Georg_Cantor
https://en.wikipedia.org/wiki/Gottlob_Frege

Resolution: On the one hand, if the librarian is a no-needed person (who looks for a book
herself), then the premise that the librarian should look for books only for help-needed people
would not be valid anymore. Thus, if she is a no-needed person, she is a help-needed person,
which is a contradiction. On the other hand, if the librarian is a help-needed person – and, as
such, she is not able to look for books herself – she should be helped by the librarian, who is
herself! Therefore, if she is a help-needed person, she is also a no-needed person – which is
another contradiction.

One of the most attractive problems that computer scientists studied in the past was part of the
23 open mathematical problems David Hilbert proposed in 1900. It is known as the halting
problem. This problem was meant to prove whether a particular algorithm will terminate its
execution at some point or it will run forever. In the previous lecture, we have developed our first
algorithm. We have defined it to always return a value as an outcome, which confirms that we
can create algorithms that terminate. Besides, as demonstrated in Section "The Turing
machine", we have also shown an algorithm (implemented by the Turing machine summarised
in Figure 3) that runs indefinitely. Thus, an approach that systematically us to discover whether
an algorithm will terminate or not is a great tool to have. Indeed, it would enable the
identification of computationally-ill algorithms.

Alan Turing created his machine for answering such a question: to prove if we can develop a
Turing machine (i.e. an algorithm) that can decide whether another machine will terminate its
execution or will not. An approximation of the solution provided by Turing is introduced as
follows. It uses a reductio ad absurdum argument, which is very close to the one presented in
Figure 5 for resolving the librarian paradox.

Suppose we have the algorithm “does it halt”, as shown in Figure 6, which returns yes if the
execution of a particular input algorithm terminates, while it returns no otherwise. This algorithm
is just hypothetical. We are supposing that we can develop it somehow, without providing it in
any particular programming language.

Figure 6. The flowchart of the “does it halt” algorithm that returns “yes” if the input algorithm
halts and returns “no” otherwise.

https://en.wikipedia.org/wiki/Hilbert%27s_problems
https://en.wikipedia.org/wiki/Hilbert%27s_problems
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Halting_problem

Then we reuse the “does it halt” algorithm for developing a new algorithm, shown in the
flowchart in Figure 7. In particular, this new algorithm takes another algorithm as input and, if the
input algorithm stops, it runs forever. Otherwise, if the input algorithm does not terminate, then it
stops. Please note that we know how to implement the various steps of this new algorithm.
Indeed, checking whether the input algorithm can terminate or not is provided by the algorithm
“does it halt” introduced in Figure 5. Moreover, the “Run forever” process operation is
implementable by a machine since we have already developed a Turing machine (presented in
Section "The Turing machine") that does so.

Now, the question is: what happens if we try to execute the algorithm described in Figure 7 by
passing itself as input? We have two possible situations:

● If the algorithm “does it halt” says that our algorithm depicted in Figure 7 stops, then our
algorithm runs forever;

● if the algorithm “does it halt” says that our algorithm shown in Figure 7 does not stop,
then our algorithm stops.

Hence, whatever is the behaviour of the algorithm introduced in Figure 7, it always generates a
contradiction. Consequently, the main algorithm used in the decision widget, i.e. the algorithm
“ does it halt”, cannot be developed. Thus, the answer to the halting problem mentioned before is
that the algorithm that checks if another one stops cannot exist.

Figure 7. The flowchart of an algorithm that runs forever if the execution of another algorithm
specified as input (and checked by using the algorithm presented in Figure 6) stops, and it stops

otherwise. Please note that the process step “Run forever” of the flowchart algorithm can be
easily developed. In fact, in Section "The Turing machine", we have shown a simple Turing

machine that implements such behaviour.

This result had a disruptive effect on the perception of computational abilities at large. In
practice, Turing's machines and their analyses posed clear limits to what we can compute.

Moreover, they enabled him to explicitly state that specific computational problems cannot be
solved, such as the halting problem mentioned in this section.

Exercises
1. Write the table of instructions of a Turing machine with four states – A (initial state), B, C,

and D (final state) – such that, once reached the final state, only the cells immediately on
the left and on the right of the initial position of the head of the machine will have the
value 1 specified. The final state must not have any instruction set in the table.

2. Consider an algorithm that takes as input a 0-1 sequence of exactly five symbols, and
returns a 1 if the sequence contains at least three consecutive 1s, and returns a 0
otherwise. Implement the algorithm with a Turing machine, where the cell correspondent
to the starting position of the head is where the final result must be stored. Also, the five
cells following the starting position of the head are initialised with the 0-1 sequence of
five symbols used as input of the algorithm.

3. Consider an algorithm that takes as input a 0-1 sequence of exactly five symbols and
returns a 1 if the sequence contains at least three 1s in any order while returns a 0
otherwise. Implement the algorithm with a Turing machine, where the cell correspondent
to the starting position of the head is where the final result must be stored. Also, the five
cells following the starting position of the head are initialised with the 0-1 sequence of
five symbols used as input of the algorithm.

Acknowledgements
The author wants to thank some of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna, i.e. Sebnem Kabadayi, for having suggested
the adoption of the Turing Machine Visualization Web application for visualising and running
Turing machines, and Francesco Fernicola and Margherita Martinelli for having suggested
corrections and improvements to the text of this chapter.

References
Dodig-Crnkovic G. (2013). Alan Turing’s Legacy: Info-computational Philosophy of Nature. In
Computing Nature: 115-123. Springer. DOI: https://doi.org/10.1007/978-3-642-37225-4_6, also
available at https://arxiv.org/ftp/arxiv/papers/1207/1207.1033.pdf

Rescher, N. (2017). Reductio ad Absurdum. Internet Encyclopedia of Philosophy.
http://www.iep.utm.edu/reductio/ (last visited 17 October 2019)

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://twitter.com/sebnemka
http://turingmachine.io
https://github.com/FrancescoFernicola
https://github.com/margheritamartinelli1997
https://doi.org/10.1007/978-3-642-37225-4_6
https://arxiv.org/ftp/arxiv/papers/1207/1207.1033.pdf
http://www.iep.utm.edu/reductio/

Turing, A. M. (1937). On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, 2 (42): 230-265. DOI:
https://doi.org/10.1112/plms/s2-42.1.230

Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, LIX (236): 433-460. DOI:
https://doi.org/10.1093/mind/LIX.236.433

Turing, A. M. (1952). The Chemical Basis of Morphogenesis. Philosophical Transactions of the
Royal Society of London B, 237(641): 37-72. DOI: https://doi.org/10.1098/rstb.1952.0012, also
available at http://www.dna.caltech.edu/courses/cs191/paperscs191/turing.pdf

Wolfram, S. (1983). Statistical mechanics of cellular automata. Review of Modern Physics, 55
(601): 601-644. DOI: https://doi.org/10.1103/RevModPhys.55.601

Wolfram, S. (2002). Two Dimensions and Beyond. In A New Kind of Science: 169-221. Wolfram
Media. ISBN: 1579550088, also available at
https://www.wolframscience.com/nks/p169--introduction/

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1098/rstb.1952.0012
http://www.dna.caltech.edu/courses/cs191/paperscs191/turing.pdf
https://doi.org/10.1103/RevModPhys.55.601
https://www.wolframscience.com/nks/p169--introduction/

