
Brute-force algorithms
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Betty Holberton; Go; Linear search; Insertion sort

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the notion of brute-force algorithms by implementing two algorithms of
this kind: linear search and insertion sort. The historic hero introduced in these notes is Betty
Holberton. She was one of the first programmers of the ENIAC and one of the key people for
the development of several programming languages and algorithms for sorting objects.

Historic hero: Betty Holberton
Frances Elizabeth – known as Betty – Holberton, shown in Figure 1, was one of the first
programmers of the Electronic Numerical Integrator and Computer (ENIAC). The funds of the
United States Army permitted the development of this earliest electronic and general-purpose
computer between 1943 and 1946. Besides, she contributed to developing several
programming languages, such as COBOL and FORTRAN. In addition, she created the first
statistical analysis tool used to analyse the United States Census data in 1950.

She dedicated a considerable part of her work to developing algorithms for sorting the elements
in a list. The activity of sorting things is a typical human activity. It can be, of course,
automatised using computers, and it is a desirable property to have for addressing several
tasks.

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Betty_Holberton
https://en.wikipedia.org/wiki/ENIAC
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/Mainframe_sort_merge
https://en.wikipedia.org/wiki/Mainframe_sort_merge

Figure 1. Picture of Betty Holberton in front of the ENIAC. Source:
https://commons.wikimedia.org/wiki/File:Betty_Holberton.jpg.

Of course, sorting things is an expensive task, in particular, if you have to order billions of items.
However, having such items sorted is crucial for several activities that we can perform on the list
that contains them. For instance, in libraries, books are ordered according to specific guidelines
such as the Dewey classification. Such a classification allows one to cluster books according to
particular fields, and each cluster contains books ordered according to the authors' names and
the book title. With this kind of order, the librarian can find a requested title, avoiding looking at
the billion books available one by one, thus saving a considerable amount of time, after all.
Therefore, to sort things in advance is a good practice if one has to search these things several
times in the future.

https://commons.wikimedia.org/wiki/File:Betty_Holberton.jpg
https://en.wikipedia.org/wiki/Dewey_Decimal_Classification

May the (brute) force be with you
In this chapter, for the very first time, we start to talk about problem-solving methods. In
Computer Science, problem-solving is to create a computer-interpretable process (i.e. an
algorithm) for solving some given problem, e.g. ordering all the books alphabetically in a library.
Computer scientists have proposed several different methods for solving problems, grouped into
general categories. Probably, the more uncomplicated class of problem-solving techniques is
the brute-force approach.

Figure 2. The game of Go, which cannot be solved efficiently through a brute-force approach.
Picture by Goban1, source: https://commons.wikimedia.org/wiki/File:FloorGoban.JPG.

https://en.wikipedia.org/wiki/Problem_solving
https://en.wikipedia.org/wiki/Brute-force_search
https://commons.wikimedia.org/wiki/File:FloorGoban.JPG

Brute-force algorithms are these processes that reach the perfect solution to a problem by
analysing all the possible candidate solutions. There are advantages and disadvantages to
adopting such kind of approach. Usually, a brute-force approach is simple to implement, and it
will always find a solution to the computational problem by considering iteratively all the possible
solutions one by one. However, its computational cost depends strictly on the number of
available candidate solutions. Thus, it is often a relatively slow, even if simple, approach for
practical problems with a vast solution space. A good suggestion is to use such a brute force
approach when the problem size is small.

Abstract strategy board games, such as Chess or Go, belong to that set of computational
problems that have a pretty huge solution space. Writing a brute-force algorithm that can play
the game appropriately requires considering all the possible legal moves available on the board
(shown in Figure 2). According to John Tromp, the number of all the possible legal moves in Go
was determined to be
2081681993819799846994786333448627702865224538845305484256394568209274196127
3801537852564845169851964390725991601562812854608988831442712971531931755773
6620397247064840935 [Tromp, 2016]. That makes a brute-force approach intractable, even for
an electronic computer.

Python has two alternatives for creating iterative blocks: for-each loops and while loops. The
first kind of iteration mechanism is provided in Python through for statement, illustrated in
Listing 1. All the instructions within the for block are repeated for each item in a collection (a
list, a queue, etc.).

for item in <collection>:
do something using the current item​

Listing 1. The general structure of a for-each loop in Python.

from collections import deque

def stack_from_list(input_list):
output_stack = deque() # the stack to create

Iterate each element in the input list and add it to the stack
for item in input_list:

output_stack.append(item)

return output_stack
Listing 2. A simple function that takes a list as input and creates a stack with all the list’s values

using a for-each loop. The source code of this listing is available as part of the material of the
course.

https://en.wikipedia.org/wiki/Abstract_strategy_game
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Foreach_loop
https://en.wikipedia.org/wiki/While_loop
http://comp-think.github.io/python/stack_from_list.py
http://comp-think.github.io/python/stack_from_list.py

The for-each loop is handy when we want to iterate on all the elements of a list. For instance,
one can apply some operations on each or find a particular value – as discussed in more detail
in Section "Linear Search". Or, we can use a for-each loop for creating a stack with all the
elements included in a list, as shown by the simple algorithm in Listing 2.

while <condition>:
do something until the condition is false

Listing 3. The general structure of a while loop in Python.

The while loop, instead, works in a slightly different way. Python allows us to create it by using a
while statement (as shown in Listing 3). The while statement will repeat all the instructions in
such block until the condition specified is true. For instance, it is possible to use a while
statement for implementing the run_forever function that maps the Turing machine
introduced in the chapter "Computability". Listing 4 shows one of its possible implementation in
Python.

def run_forever():
value = 0
while value >= 0:

value = value + 1
Listing 4. Another simple algorithm that sums 1 to a starting value indefinitely. The source code

of this listing is available as part of the material of the course.

In the following sections, we reuse some of these iterations to implement two brute-force
algorithms for searching the position of an item in a list and ordering a list. These are known as
linear search and insertion sort.

Linear search
Searching for the position in which a particular value is in a list is an ordinary operation, which
has applications in several real-life tasks. For instance, consider again the library’s example
introduced in Section "Historic hero: Betty Holberton". Once a librarian has received a particular
request for a book, she consults the catalogue of all the library books. Then, she finds the
appropriate location of the requested book. This scenario is a sort of actual application of the
aforementioned abstract problem of searching a value in a list, which is formally defined as
follows:

Computational problem: find the position of the first occurrence of a value within a list.

While several approaches can be used to find an element in a list, we focus on a particular
algorithm, called linear search. This approach is pretty simple. The idea is to iterate over all the
items contained in an input list one by one. Then, one must check if they are equal to the value

https://comp-think.github.io/book/03.pdf
http://comp-think.github.io/python/run_forever.py
https://en.wikipedia.org/wiki/Linear_search

we are looking for, specified as input. Once the input value is found in the list, the librarian
returns its position in the list. If the list does not contain the input value, she returns no position
at all.

We need to clarify some aspects of the description of the linear search algorithm before
providing its implementation in Python. The first one is that an item in a list has a specific
position, which is quite natural if you think about it. However, in the previous chapter, we have
not mentioned how to get such a position. Besides, there is an aspect typical of Computer
Science: that wants to number every position starting from 0, instead of 1. Thus, for instance,
looking at the books in Figure 3, Terry Pratchett's The Carpet People has position 0, James
Ponti's Dead City has position 1, and so on.

Figure 3. The position numbers assigned to a book of a list according to the typical Computer
Science habit – which starts numbering from 0.

for <var_item_1>, <var_item_2>, ... in <collection of tuples>:
here you can use directly the variables defining
the various items in the tuple​

Listing 5. How Python allows one to decouple tuples in for-each loops involving a collection of
tuples by assigning a variable to each item in the tuple.

Python allows one to use the function enumerate(<list>) for retrieving an item’s current
position in a list that is accessed using a for-each loop. This function takes a list of values as
input and returns a kind of list (it is an enumerate object: it behaves like a list, but it is not a list)
of tuples. Each tuple contains two elements: the first element is the position of the item in
consideration within the list, while the second element is the item itself. In Python, a tuple is

https://en.wikipedia.org/wiki/Tuple

created by specifying comma-separated values between round brackets – for instance,
my_tuple = (0, 1, 2, 3, 4, 5) assigns a tuple with six numbers to my_tuple. Thus,
while tuples could be perceived as similar to lists, they are not. The main difference with lists is
that tuples do not provide any way for updating them with a new value since they do not permit
the append operation. Thus, once a tuple is created, it stays forever.

Test case for the algorithm
def test_linear_search(input_list, value_to_search, expected):

result = linear_search(input_list, value_to_search)
if expected == result:

return True
else:

return False

Code of the algorithm
def linear_search(input_list, value_to_search):

iterate all the items in the input list,
getting also their position on the list
for position, item in enumerate(input_list):

check if the current item is equal to the value to search
if item == value_to_search:

if so, the position of the current item is returned
and the algorithm stops
return position

Three different test runs
print(test_linear_search([1, 2, 3, 4, 5], 3, 2))
print(test_linear_search(["Alice", "Catherine", "Bob", "Charles"],

"Denver", None))
print(test_linear_search(["Ron", "Harry", "Hermione"], "Ron", 0))
Listing 6. The linear search algorithm described in Python, including its test case. The source

code of this listing is available as part of the material of the course.

Considering these aspects, running the function enumerate(list(["a", "b", "c"]))
will return the following enumeration of tuples: enumerate([(0, "a"), (1, "b"), (2,
"c")]), where the first item of each tuple is the position that the second item of the tuple has in
the original list. Also, Python allows us to decouple the items in a tuple by specifying names for
each item with variables created in the for statement on the fly, as shown in Listing 5. Thus, for
instance, a for-each loop like for position, item in enumerate([(0, "a"), (1,
"b"), (2, "c")]) will assign 0 to ​position and "a" to ​item in the first iteration, 1 to
​position and "b" to ​item in the second iteration, and 2 to ​position and "c" to ​item in the
third iteration.

http://comp-think.github.io/python/linear_search.py

​list_of_books = list(["Coraline", "American Gods",
"The Graveyard Book", "Good Omens",
"Neverwhere"])

​​linear_search(list_of_books, "The Graveyard Book")
​

​# FOR-EACH LOOP EXECUTION
​# enumerate(input_list) will result in:
​# enumerate([(0, "Coraline"), (1, "American Gods"),
(2, "The Graveyard Book"), (3, "Good Omens"),
(4, "Neverwhere")])
​#
​# Iteration 1
​# position = 0
​# item = "Coraline"
​# item == value_to_search is False
​# Continue to the next iteration
​#
​# Iteration 2
​# position = 1
​# item = "American Gods"
​# item == value_to_search is False
​# ​Continue to the next iteration
​#
​# Iteration 3
​# position = 2
​# item = "The Graveyard Book"
​# item == value_to_search is True
​# Return the position (i.e. 2) and end the execution of the algorithm

Listing 7. An example of the execution steps of the linear search algorithm implemented.

There is an aspect that is implicit in the description of the linear search algorithm introduced
before. Indeed, the algorithm should not return any position if the value to search is not present
in the list. In Python, this can be implemented by returning nothing (i.e. by not ever executing
the statement return) or explicitly returning a particular object that means nothing, i.e. None.

At this point, we have all the ingredients for developing the linear search algorithm in Python,
shown in Listing 6. To understand how the algorithm works, we have prepared a description of
the various execution steps (shown in Listing 7) of the for-each loop introduced in the algorithm.
This description would allow the reader to glance at how iterative loops work from a purely
computational point of view.

Insertion sort
As already mentioned in Section "Historic hero: Betty Holberton", the task of ordering a
sequence of items is an operation we usually have to deal with in everyday life. Recalling the
library’s example, having the books sorted will make searching them more efficient. It would
allow us to avoid using naive approaches for the search, e.g. the one introduced in Section
"Linear search". These naive approaches are pretty expensive if we have billions of books to
check.

Figure 4. The execution of the insertion sort algorithm using the following list of book titles as
input: Coraline, American Gods, The Graveyard Book, Good Omens, Neverwhere. The book

highlighted by a bold red border is currently selected in the particular iteration of the algorithm.
The red arrow shows the assigned position of the book in the output list. We use a transparent

filter on books considered in previous iterations of the process.

In this section, we propose one particular brute-force algorithm for addressing the following
computational problem:

Computational problem: sort all the items in a given list.

The algorithm that we want to use for addressing the aforementioned computational problem is
called insertion sort. It is one of the simplest sorting algorithms to implement , and it is pretty1

efficient for small lists. The idea behind this algorithm is the following. First, it considers the
items in the list one by one, according to the order placed. Thus, at each iteration, it removes
one item from the input list. Then, it finds the correct location in the output list by looking at the
items the output list contains starting from the last one (i.e. the rightmost one). Finally, it inserts
it in the location found. The algorithm finishes when there are no more items to add to the output
list. Figure 4 shows an example of the execution of this algorithm.

def insertion_sort(input_list):
result = list() # A new empty list where to store the result

iterate all the items on the input list
for item in input_list:

initialise the position where to insert the item
at the end of the result list
insert_position = len(result)

iterate, in reverse order, all the positions of all the
items already included in the result list
for prev_position in reversed(range(insert_position)):

check if the current item is less than the one in
prev_position in the result list
if item < result[prev_position]:

if it is so, then the position where to insert the
current item becomes prev_position
insert_position = prev_position

the item is inserted into the position found
result.insert(insert_position, item)

return result # the ordered list is returned
Listing 8. The insertion sort algorithm described in Python. The source code of this listing is

available as part of the course material and includes the algorithm’s test case.

1 For a more comprehensive discussion and examples on sorting algorithms, please see the Visualgo
webpage about them and a creative Youtube video showing fifteen distinct sorting algorithms in action.

https://en.wikipedia.org/wiki/Insertion_sort
http://comp-think.github.io/python/insertion_sort.py
https://visualgo.net/en/sorting
https://visualgo.net/en/sorting
https://www.youtube.com/watch?v=kPRA0W1kECg

To provide a Python implementation of this algorithm, we need to introduce two functions and
one additional operation applicable to lists. The first function we need to use is
range(<stop_number>). It takes a non-negative number as input. It returns a kind of list (i.e.
a range object behaving like a list) of all numbers from 0 to the one preceding stop_number.
Thus, for instance, range(4) returns the range([0, 1, 2, 3]), while range(0) returns
the empty range object range([]).

The other function is reversed(<input_list>). This function takes a list as input. It returns
a kind of list, i.e. an iterator for iterating the items in the list in reversed order. Thus, for instance,
reversed(list([0, 1, 2, 3])) returns iterator([3, 2, 1, 0]). We can use
these two functions in combination. They allow us to obtain the positions of the items already
ordered in past iterations of the algorithm. For instance, reversed(range(2)) returns
iterator(range([1, 0])) starting from the position (i.e. 2) of the third item in the input
list.

In addition, we need a way for selecting an item in a list and for inserting an item in a specific
position in a list. For addressing these tasks, Python makes available the additional list methods
<list>[<position>] and <list>.insert(<position>, <item>). In particular, the
former returns the item in the list at the specified position – e.g. if we have the list ​my_list =
list(["a", "b", "c"]), ​my_list[1] returns "b". The latter method allows one to put
<item> in the position specified, and it shifts all the elements with position greater than or
equal to <position> of one position – e.g., by applying my_list.insert(1, "d"), the list
in my_list is modified as follows: list(["a", "d", "b", "c"]).

At this point, we have all the ingredients for developing the insertion sort algorithm in Python,
shown in Listing 8.

Exercises
1. Write down the execution steps of linear_search(list(["Coraline",

"American Gods", "The Graveyard Book", "Good Omens",
"Neverwhere"]), "The Sandman"), as explained in Listing 7.

2. Create a test case for the algorithm introduced in Listing 2.
3. Write in Python the function def my_enumerate(input_list), which behaves like

the built-in function enumerate() introduced in Section "Linear search" and returns a
proper list, and accompany the function with the related test case. It is not possible to
use the built-in function enumerate() in the implementation.

4. Write in Python the function def my_range(stop_number), which behave like the
built-in function range() introduced in Section "Insertion sort" and returns a proper list,
and accompany the function with the related test case. It is not possible to use the
built-in function range() in the implementation.

5. Write in Python the function def my_reversed(input_list), which behave like the
built-in function reversed() introduced in Section "Insertion sort" and returns a proper
list, and accompany the function with the related test case. It is not possible to use the
built-in function reversed() in the implementation.

Acknowledgements
The author wants to thank one of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna, Severin Josef Burg, for having suggested
corrections to the text of this chapter.

References
Tromp, J. (2016). Counting Legal Positions in Go. http://tromp.github.io/go/legal.html (last visited
10 November 2017)

https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://github.com/SeverinJB
http://tromp.github.io/go/legal.html

