Recursion

Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and Italian Studies, University of Bologna, Bologna, Italy

Keywords
Douglas Hofstadter; Little harmonic labyrinth; Recursive functions; Self-reference

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g. remix, transform, and build upon the material) for any purpose, even commercially, under the following terms: attribution, i.e. you must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. The licensor cannot revoke these freedoms as long as you follow the license terms.

Abstract

This chapter introduces one of the main concepts related to Computational Thinking, i.e. the recursion. The historic hero introduced in these notes is Douglas Hofstadter. He is a cognitive scientist. He wrote one of the best-selling educational books on mathematics, logic and self-references entitled Gödel, Escher, Bach: An Eternal Golden Braid.

Historic hero: Douglas Hofstadter

Douglas Richard Hofstadter (see Figure 1) is a cognitive scientist. His research focuses primarily on the concept of self-reference while being also very active in the fields of consciousness, art, mathematics and physics. He is the author of Gödel, Escher, Bach: An Eternal Golden Braid (a.k.a. GEB) where he investigated in depth the concept of self-reference [Hofstadter, 1979]. In 1980, he received the Pulitzer award for that book in the general nonfiction category.

The book is one of the primary sources of inspiration for choosing to work in the Computer Science field. While Hofstadter is not a computer scientist, one of the central figures of his book is a famous logician, i.e. Kurt Gödel. Gödel provided several contributions also related to the theoretical Computer Science field. In addition to that, since one of the leading book themes concerns a detailed discussion about the concept of intelligence, the final part of the book discusses the Artificial Intelligence field.
Self-reference

The structure of GEB is an alternation of fictional dialogues and several puzzles. The dialogues are functional to the various topics introduced in the book chapters. The puzzles enable the author to explain the critical behaviour of formal mathematics using easy-listening examples. One of the dialogues is of great interest for this chapter, i.e. the Little Harmonic Labyrinth. In this dialogue, the two main characters, i.e. Achilles and the Tortoise, are living a series of adventures in various worlds starting from the inconsistent composite world described in the Convex and Concave lithograph by Maurits Cornelis Escher. In particular, by using two specific
drinks, i.e. the *pushing-potion* and the *popping-tonic*, one can enter into a world depicted in an oil painting or any other printed picture and exit from that world, respectively.

One can use these pushing and popping operations within any world. Once entered into the world described in the *Convex and Concave* lithograph, one can drink another pushing-potion to get into another world depicted by another painting. In this case, though, one needs to drink the popping-tonic twice to come back to the real world. One can start to be lost by doing these pushing and popping operations several times. In fact, one could be not entirely sure if the world from which she thinks the journey started is actually the real world, since she could have come from another world (and just forgotten about it), and so on. Several stories in the past addressed this specific theme of a journey in a stack of worlds, e.g. in Christopher Nolan's 2010 movie entitled *Inception*.

During the journey in several worlds, Achilles and the Tortoise narrate (or are part of) a lot of stories. These stories include citations and references as well as self-citations and self-references that entangle and even change the whole narrative structure of the dialogue several times. One of the situations that occur concerns the use, by Achilles, of a magic lamp that allows one to evoke a genie. After rubbing it, a genie appears, and Achilles asks him, as the first wish, the possibility of having one hundred wishes instead of the usual three. The genie answers that he is not able to grant any meta-wish (i.e. a wish about a wish). However, the genie tries to propose a solution to that request by evoking a new meta-genie from his meta-lamp. Then, the genie asks if the meta-genie and, as a consequence, GOD (i.e. an acronym for *GOD Over Djinn*, where the word *Djinn* is used to designate all the possible genies and meta-genies that can exist) could enable Achilles to ask for a meta-wish. The meta-genie takes his meta-meta-lamp to evoke the meta-meta-genie to answer to the genie's request. Then the meta-genie asks the meta-meta-genie the very same permission, and so on. Once, in the end, Achilles is granted with the consent of asking for a meta-wish, he *wishes that his wish would not be allowed*.

This story contains several pieces of evidence of very well-known, and delicate, aspects of mathematics and logic. For instance, the acronym GOD used in the story is a *recursive* acronym. It means that the definition of the acronym contains the acronym itself, thus creating an infinite sequence of acronym rewriting if one tries to disentangle it. For instance, GOD becomes *GOD Over Djinn*, that becomes *GOD Over Djinn Over Djinn*, that becomes *GOD Over Djinn Over Djinn Over Djinn*, and so on. Also, the wish asked by Achilles contains a strange situation: it concerns the denial of the wish itself. This request creates a paradox through a *self-reference*, i.e. the situation where something (e.g. a sentence or formula) refers to itself.

It is worth mentioning that these kinds of self-references may occur in any natural or formal language. For instance, the (meta-)sentence “this sentence is false” is an example of such a paradoxical situation. Even graphical languages can describe conditions which include self-references. For instance, in Escher lithograph shown in Figure 2, there are two hands that are drawing each other. This situation creates a paradox. However, this paradox is just apparent
since it exists only in the world depicted by the litograph. In the real world, there is no paradox since Escher created the lithograph. The take-away message is to behave of self-references. They are powerful tools, but they can also lead to inconsistencies if they are not appropriately tamed.

Recursion

Generally speaking, we have a recursion when something is defined in terms of itself or of its type – i.e. when its definition contains a self-reference. We use recursion effectively in different academic fields, such as cognitive sciences, linguistics, logic, mathematics, physics, and computer science. In this section, we show some well-known adoption of recursion.

In the cognitive science domain, for instance, the study of self-awareness involves recursion by definition. The goal of this cognitive aspect concerns the ability to recognise ourselves as individuals separate from the environment and other individuals. Thus, it is an activity that involves us in studying how ourself appear in the situation we live in. The concept of self-consciousness is closely related to the activity mentioned above. Self-consciousness concerns the recognition of our existence as cognitive agents. These merely philosophical aspects have been explored extensively even in creative works, such as in comics (e.g. Masamune Shirow's *Ghost in the Shell*) and movies (e.g. Ridley Scott's *Blade Runner*).

The formal grammars introduced in the very first chapter can contain examples of recursive rules as well. Actually, recursive rules are quite typical in the intended formal grammar of programming languages. For instance, consider that we need to specify the formal grammar for
handling all the boolean operations and, or and not, as introduced in the second chapter. A reasonable formal grammar is the following one:

1) <boolean_exp> ::= "(" "not" <boolean_exp> ")"
2) <boolean_exp> ::= "(" <boolean_exp> "or" <boolean_exp> ")"
3) <boolean_exp> ::= "(" <boolean_exp> "and" <boolean_exp> ")"
4) <boolean_exp> ::= "True"
5) <boolean_exp> ::= "False"

The non-terminal symbol <boolean_exp> is used in the left-side and right-side of three rules, in a recursive way, for defining all the possible combinations of the boolean operation that can lead to a boolean expression. By using the aforementioned grammar, it is possible, for instance, to create complex boolean expressions like (((True and (not False)) or False) and True). In fact, they are actually obtained by using the rules specified as follows:

<boolean_exp>
 --3--> (boolean_exp and boolean_exp)
 --4--> (boolean_exp and True)
 --2--> ((boolean_exp or boolean_exp) and True)
 --5--> ((boolean_exp or False) and True)
 --3--> (((boolean_exp and boolean_exp) or False) and True)
 --4--> (((True and boolean_exp) or False) and True)
 --1--> (((True and (not boolean_exp)) or False) and True)
 --5--> (((True and (not False)) or False) and True)

Even Noam Chomsky argued that recursion is a specific ability and essential property of human language. For instance, each sentence can be a composition of a subject, a verb, and another sentence as objective part, as shown by the following formal grammar:

1) <sentence> ::= <subj> <verb> <sentence>
2) <sentence> ::= <subj> <verb> "books"
3) <subj> ::= "Alice"
4) <subj> ::= "Bob"
5) <subj> ::= "Christine"
6) <verb> ::= "thinks"
7) <verb> ::= "said"
8) <verb> ::= "read"

According to the aforementioned rules, and in particular the first one that allows us to build a sequence of linked sentences, it would be possible to write a composite sentence like “Alice thinks that Bob said that Christine read books”. This is possible by applying the aforementioned rules as follows:
We can find similar recursive situations in physics. Such situations concern well-known scenarios that can happen in our daily life, such as those introduced in Figure 3. In particular, the left picture shows a situation known as the infinity mirror, created by positioning two mirrors, one in front of the other, to reflect an image indefinitely. On the other hand, the right picture is portraying Jimi Hendrix, who mastered the use of the Larsen effect. A Larsen effect happens when an audio output device (e.g. a speaker) amplifies an audio signal received by an audio input device (e.g. the guitar pickup). That amplified signal is then received again by the input device, and so forth, to create an audio loop.

Recursive functions

As anticipated in the previous section, the recursion is used (quite extensively) also in Computer Science, and it represents, technically speaking, an alternative to the iteration. In practice,
Recursion is useful when a solution to a particular computational problem depends on the partial solutions of smaller instances of the same problem. Computer scientists have developed some approaches to tame\(^1\) recursion to avoid infinite loops, and thus to use it within algorithms. have developed some approaches to tame recursion so as to avoid infinite loops, and thus to use it within algorithms. In practice, an algorithm has a recursive behaviour when it has one or more basic cases and at least one recursive step. Each basic case describes a terminating scenario and does not use any recursion to produce the answer to a specific (sub-)problem. Instead, the recursion step is where the same algorithm is executed again with a different (and, usually, reduced) input. Listing 1 shows the generic skeleton of a recursive algorithm with one basic condition and one recursive step.

```python
def <function>(<param_1>, <param_2>, ...):
    if <base_case_condition>:
        # do something and then...
        return <value>
    else:
        # do something and then... execute the recursive step
        result = <function>(<param_a>, <param_b>, ...)

        # the result of the recursive step is combined
        # somehow with other information, and then...
        return <value>  # resulting from the use of recursion
```

Listing 1. The general structure of a recursive algorithm implemented as a Python function.

It is worth mentioning that the basic case is crucial for allowing the algorithm to stop a certain point. Usually, avoiding the basic case means to create an algorithm that runs forever. For instance, in Listing 2, there is a recursive implementation of the run_forever function we have shown in one previous chapter. The only thing that such a recursive algorithm does is to call itself again, thus creating a loop of calls that never ends.

```python
def run_forever_recursive():
    run_forever_recursive()
```

Listing 2. A function that never stops created using only a recursion step. We do not use any basic case in this example, that is usually a sign that the recursive algorithm does not stop. The source code of this listing is available as part of the material of the course.

An example of a simple and complete (basic case + recursive step) recursive algorithm that solves a particular computational problem is that of the multiplication operation. In particular, the

\(^1\) The activity of taming something like recursion and other computational approaches has been often used as main characteristic to recognise computer scientists as wizards by the general audience [Tyler, 2013].
multiplication of two integers can be defined as the sum of the first number with itself as many times as indicated by the other number, e.g.: $3 \cdot 4 = 3 + 3 + 3 + 3$. However, looking carefully at the behaviour of this operation, one can also decouple it in terms of a sequence of multiplications summed with each other. In fact, $n_1 \cdot n_2 = n_1 + (n_1 \cdot (n_2 - 1))$ and, by applying the same rule, we can then say that $n_1 + (n_1 \cdot (n_2 - 1)) = n_1 + (n_1 + (n_1 \cdot ((n_2 - 1) - 1)))$, and so forth until we do not multiply the first number by 0, which is the basic case. For instance, $3 \cdot 4$ can be rewritten as follows by means of the aforementioned rule: $3 \cdot 4 = 3 + (3 \cdot 3) = 3 + (3 + (3 \cdot 2)) = 3 + (3 + (3 + (3 \cdot 1))) = 3 + (3 + (3 + (3 + (3 \cdot 0)))) = 3 + 3 + 3 + 3 + 0 = 12$. This mechanism for defining the multiplication is entirely based on a recursive approach, which is illustrated in Listing 3.

```python
# Test case for the algorithm
def test_multiplication(int_1, int_2, expected):
    result = multiplication(int_1, int_2)
    if expected == result:
        return True
    else:
        return False

# Code of the algorithm
def multiplication(int_1, int_2):
    if int_2 == 0:
        return 0
    else:
        return int_1 + multiplication(int_1, int_2 - 1)

print(test_multiplication(0, 0, 0))
print(test_multiplication(1, 0, 0))
print(test_multiplication(5, 7, 35))
```

Listing 3. A recursive function for calculating the multiplication between two non-negative integers, accompanied by the related test case. The source code of this listing is available as part of the material of the course.

Exercises

1. Define a recursive function `def exponentiation(base_number, exponent)` for implementing the exponentiation operation. Test (by implementing the related test case) it on the following inputs: 3^4, 17^1, and 2^0.
2. Define a recursive function `def fib(n)` that implements the algorithm to find the n^{th} Fibonacci number. In particular, if n is less than or equal to 0, then 0 is returned as a
result. Otherwise, if \(n \) is equal to 1, then 1 is returned. Otherwise, return the sum of the same function called with \(n-1 \) and \(n-2 \) as input. Please accompany the function with the related test case.

Acknowledgements

The author wants to thank a student of the **Digital Humanities and Digital Knowledge second-cycle degree of the University of Bologna** – i.e. **Severin Josef Burg** – for having suggested corrections and improvements to the text of this chapter.

References
