
Organising information: graphs
Author(s)
Silvio Peroni – silvio.peroni@unibo.it – https://orcid.org/0000-0003-0530-4305
Digital Humanities Advanced Research Centre (DHARC), Department of Classical Philology and
Italian Studies, University of Bologna, Bologna, Italy

Keywords
Edges and nodes; Euler; Graph; Königsberg

Copyright notice
This work is licensed under a Creative Commons Attribution 4.0 International License. You are
free to share (i.e. copy and redistribute the material in any medium or format) and adapt (e.g.
remix, transform, and build upon the material) for any purpose, even commercially, under the
following terms: attribution, i.e. you must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but not in any
way that suggests the licensor endorses you or your use. The licensor cannot revoke these
freedoms as long as you follow the license terms.

Abstract
This chapter introduces the last data structure presented in this course, i.e. the graph. The
historic hero introduced in these notes is Leonhard Euler, a great scientist of the 18th century
who introduced a new mathematical field called graph theory for the very first time.

Historic hero: Euler
Leonhard Euler (shown in Figure 1) was one of the most influential men of Science of whole
history. His contributions in Mathematics, Physics, Astronomy, Logic, among others, were
disruptive and even started pretty new disciplines. He spent most of his life in Saint Petersburg
in Russia. Among the mathematical problems he dealt with, one related to a hilarious story that
he solved by initiating a new field in mathematics called graph theory.

The (mathematical) story told about the seven bridges of the city of Königsberg, illustrated in
Figure 2. We can state the problem as follows: is it possible to walk around the town and cross
each bridge once and only once? Several people have tried to propose a solution to this enigma
before Euler. Finally, he demonstrated it through purely mathematical (and non-debatable) proof
[Euler, 1741].

https://orcid.org/0000-0003-0530-4305
mailto:silvio.peroni@unibo.it
https://orcid.org/0000-0003-0530-4305
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Figure 1. A portrait of Leonard Euler by Emanuel Handmann. Picture by Oursana, source:
https://en.wikipedia.org/wiki/File:Leonhard_Euler.jpg.

Figure 2. A representation of the seven bridges in Königsberg. Figure by Bogdan Giuşcă,
source: https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png.

https://en.wikipedia.org/wiki/File:Leonhard_Euler.jpg
https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png

He abstractly described the four lands in Königsberg divided by the river as nodes of a network,
where each edge between two nodes represents one of the city’s bridges. Figure 3 shows his
abstract representation of the problem. Using this abstract notion, known as graph, he
demonstrated that there is no solution to the problem of the seven bridges of Königsberg.

Figure 3. An abstract representation of the seven bridges of Königsbergof Königsberg using a
graph.

He based the solution to the problem on the following intuition. The idea was that each node,
excepting the starting node and the final node, should have an even number of edges. It is a
practical implication: one should pass through two different bridges (i.e. arts) to enter and then
go out from a node. Thus, non-starting and non-ending nodes must have an even number of
edges for being satisfactorily traversed one or more times. However, all the nodes in Figure 3
have an odd number of edges, which contradicts the aforementioned requirement.

Graphs
Graphs are one of the principal data structures in Computer Science and Computational
Thinking. For example, they describe routes between cities, connections to people in social
networks, the organisation of links between Web pages, etc. [Albert and Barabasi, 2002].
Graphs are entirely derived from the mathematical structure invented by Euler, as illustrated in
Section "Historic hero: Euler". In particular, we can distinguish two different kinds of graphs:
undirected graphs and directed graphs. In undirected graphs, used by Euler in the seven
bridges problem, one can traverse an edge in one way or the other indifferently. Instead, the
edge specifies the direction for crossing it in directed graphs.

In Python, as it happens for the trees, there is no built-in class defining this type of object.
However, several external libraries implement them. Among the most used and famous there is

https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
http://mathinsight.org/definition/undirected_graph
http://mathinsight.org/definition/directed_graph
https://networkx.github.io/

NetworkX. This library makes available the common constructs for creating and traversing
graphs and additional functions for analysing them for different purposes, such as for the
analysis of social networks.

Undirected graphs
We can create an undirected using the constructor Graph(). Then, we make all the nodes and
edges of such a new graph by using its available methods.

from networkx import Graph

create a new graph
my_graph = Graph()

create four nodes
my_graph.add_node(1)
my_graph.add_node(2)
my_graph.add_node(3)
my_graph.add_node(4)

create five edges
my_graph.add_edge(1, 2)
my_graph.add_edge(1, 3)
my_graph.add_edge(1, 4)
my_graph.add_edge(2, 3)
my_graph.add_edge(3, 4)

Listing 1. A simple undirected graph with four nodes and five edges. The source code of this
listing is available as part of the material of the course.

The NetworkX package allows us to associate an immutable object as a node. We can
connect such a node through one or more edges. In particular, it is possible to execute the
following methods on a graph object:

● ​<graph>.add_node(<node>) adds <node> as a node of the graph – note that, if a
node with that value is already present, the method does not affect the graph;

● ​<graph>.add_edge(<node_1>, <node_2>) adds an edge between <node_1>
and <node_2> – note that, since we are dealing with undirected graphs, inverting the
position of the input nodes does not change the result;

● ​<graph>.remove_node(<node>) removes <node> from the graph as well as all the
edges that involve it directly;

● ​<graph>.remove_edge(<node_1>, <node_2>) removes the particular edge
between the two nodes specified.

https://networkx.github.io/
http://comp-think.github.io/python/graph_instructions.py

Listing 1 introduces an example of a graph. It creates a structure similar to the one presented in
Figure 3, except it is impossible to make multiple arcs between two nodes. Thus, using this
specific constructor, it is impossible to create the same structure requested by Euler for solving
the mathematical problem introduced in Section "Historic hero".

from networkx import MultiGraph

create a new graph
my_graph = MultiGraph()

create four nodes
my_graph.add_node(1)
my_graph.add_node(2)
my_graph.add_node(3)
my_graph.add_node(4)

create seven edges
my_graph.add_edge(1, 2)
my_graph.add_edge(1, 2)
my_graph.add_edge(1, 3)
my_graph.add_edge(1, 4)
my_graph.add_edge(1, 4)
my_graph.add_edge(2, 3)
my_graph.add_edge(3, 4)
Listing 2. Another undirected graph that maps precisely the situation depicted in Figure 3 since

it allows the creation of multiple arcs between the same two nodes. The source code of this
listing is available as part of the material of the course.

To enable the creation of multiple edges between two nodes, we have to use a different kind of
undirected graph using the constructor MultiGraph(). This graph accepts multiple edges
between nodes by calling the method ​<graph>.add_edge(<node_1>, <node_2>) several
times, and the method ​​<graph>.remove_node(<node>) will remove all the edges involving
that input node, as usual. Listing 2 introduces an example of this kind of graph that maps
precisely the one introduced in Figure 3.

Two additional methods are fundamental to understanding how a graph is composed and which
nodes link to the others. They are <graph>.nodes() and <graph>.edges(), each
returning particular kind of lists (called NodeView and EdgeView respectively) that can be
iterated by means of a for-each loop as usual. It is also possible to understand what are the
nodes linked by a target node using the adjacency variable <graph>.adj[<node>]. This
operation returns an ​AtlasView: a kind of dictionary containing all the nodes reachable from
<node>, where each dictionary key represents one of these nodes.

http://comp-think.github.io/python/multigraph_instructions.py

from networkx import Graph

create a new graph
my_graph = Graph() # it works also with MultiGraph

my_graph.add_node(1) # no additional data
my_graph.add_node(2, name="John", surname="Doe") # additional data
my_graph.add_node(3)

my_graph.nodes()
Returns NodeView (tuple) with all the nodes:
NodeView((1, 2, 3))

my_graph.nodes(data=True)
Returns a NodeDataView (like a dictionary) with nodes + data:
NodeDataView({1: {}, 2: {'name': 'John', 'surname': 'Doe'}, 3: {}})

my_graph.add_edge(1, 2) # no additional data
my_graph.add_edge(1, 3, weight=4) # additional data

my_graph.edges()
Returns an EdgeView (of two-item tuples) with all the edges:
EdgeView([(1, 2), (1, 3)])

my_graph.edges(data=True)
Returns an EdgeDataView (of three-item tuples) with edges + data:
EdgeDataView([(1, 2, {}), (1, 3, {'weight': 4})])

my_graph.adj[1]
This returns an AtlasView (like a dictionary) containing all the
nodes that are reachable from an input one + data of edges:
AtlasView({2: {}, 3: {'weight': 4}})
Listing 3. The use of additional data for enriching nodes and edges of graphs. The source code

of this listing is available as part of the material of the course.

The value associated with each node, in this case, is another dictionary that is initialised empty
if one did not specify any additional information explicitly. This information, or attribute in
NetworkX, can be specified when one build the edge connecting the two nodes. In particular, we
use one or more pairs of a parameter and the value assigned to him via =, as shown in Listing
3. We can do the same kind of assignments to nodes. In addition, these information can be also
shown by executing the aforementioned methods nodes() and edges() by specifying the
named parameter data as True, i.e. ​<graph>.nodes(data=True) and
​<graph>.edges(data=True). This use of naming the parameters explicitly in Python when

http://comp-think.github.io/python/graph_attribute_instructions.py

one wants to execute a method (or a function) is permissible by Python, as explained in its
documentation.

Directed graphs
According to the NetworkX package, we can create a directed graph with the constructor
DiGraph(). In NetworkX, a direct graph has the same methods of undirected graphs,
presented in Section "Undirected graphs". However, in this case, the order between <node_1>
and <node_2> in the methods for adding and removing an edge is meaningful, since an edge
specifies a particular direction: <node_1> is the source node, while <node_2> is the target
node.

Also, it is possible to specify more than one edge between two nodes by using the constructor
MultiDiGraph(). For instance, Figure 4 shows the abstract diagram of the graph
implemented in Listing 2 if the constructor MultiDiGraph() would be used instead of
MultiGraph().

Figure 4. The diagram of the graph depicted in Figure 3 and implemented in Listing 2 if we use
MultiDiGraph() instead of ​MultiGraph().

Exercises
1. Consider the list of co-authors of Tim Berners-Lee as illustrated in the right box at

http://dblp.uni-trier.de/pers/hd/b/Berners=Lee:Tim. Build an undirected graph containing
Tim Berners Lee as the central node, linking it to five nodes representing his top-five
co-authors. Also, specify the weight of each edge as an attribute, where the value of the
weight is the number of bibliographic resources (articles, proceedings, etc.) Tim
Berners-Lee has co-authored with the person linked by that edge.

https://docs.python.org/3/glossary.html#term-argument
https://docs.python.org/3/glossary.html#term-argument
http://dblp.uni-trier.de/pers/hd/b/Berners=Lee:Tim
http://dblp.uni-trier.de/pers/hd/b/Berners=Lee:Tim

2. Create a directed graph that relates the actors Brad Pitt, Eva Green, George Clooney,
Catherine Zeta-Jones, Johnny Depp, and Helena Bonham Carter to the following
movies: Ocean's Twelve, Fight Club, Dark Shadows.

Acknowledgements
The author wants to thank one of the students of the Digital Humanities and Digital Knowledge
second-cycle degree of the University of Bologna, Chantal Lengua and Carlo Teo Pedretti, for
having suggested corrections to the text of this chapter.

References
Albert, R., Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of
Modern Physics, 74 (47): 47-97. DOI: https://doi.org/10.1103/RevModPhys.74.47, freely
available at https://arxiv.org/pdf/cond-mat/0106096.pdf

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii academiae
scientiarum Petropolitanae, 8 (1741): 128-140.
http://eulerarchive.maa.org//docs/originals/E053.pdf (last visited 10 December 2017)

http://www.imdb.com/name/nm0000093/
http://www.imdb.com/name/nm1200692/
http://www.imdb.com/name/nm0000123/
http://www.imdb.com/name/nm0001876/
http://www.imdb.com/name/nm0001876/
http://www.imdb.com/name/nm0000136/
http://www.imdb.com/name/nm0000307/
http://www.imdb.com/title/tt0349903/
http://www.imdb.com/title/tt0137523/
http://www.imdb.com/title/tt1077368/
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://corsi.unibo.it/2cycle/DigitalHumanitiesKnowledge
https://twitter.com/ChantalLengua
https://github.com/friendlynihilist
https://doi.org/10.1103/RevModPhys.74.47
https://arxiv.org/pdf/cond-mat/0106096.pdf
http://eulerarchive.maa.org//docs/originals/E053.pdf

